MICROECONOMICS III CLASS 6

Wiktor Budziński

PRIVATE GOODS

Excludable: Consumption of the good by one individual prevents another individual from consuming it.

Rival: There is competition between individuals to obtain the good.

Every consumer of the good can only consume as much of it as he acquires for himself

Non-excludable: Nobody can be excluded from consumption of the good. **Non-rival**: The same unit of a good can be used at the same time by every consumer.

A public good is delivered in the same amount to every consumer

TYPES OF GOODS

	Excludable	Non-excludable
Rival	<u>Private goods</u>	<u>Common-pool resources</u>
	tood, clothing, phones	coal, timber, public road
Non-rival	<u>Club goods</u>	<u>Public goods</u>
	cinemas, private parks,	air, national defense,
	cable television	biodiversity, stable
		climate, street lights

THE TRAGEDY OF THE COMMONS

A situation in a shared-resource system where every individual tries to get the greatest benefit from a given resource.

Individuals act independently according to their self-interest

Goods to which there is unlimited access or which constitute common goods are overexploited

 The supplier of such a good cannot exclude anyone from using the good once it has been supplied

THE TRAGEDY OF THE COMMONS

Example

- Seas and oceans are connected, and fish do not perceive any (political) boarders.
- Overfishing generates costs to everyone.
- It affects economic well-being of the communities who depend on fish for their way of life.
- The World Bank report (2017): Overfishing costs the world \$83 billion annually in lost revenues.
- It also impacts the balance of life in the oceans

THE TRAGEDY OF THE COMMONS

Example

- Greenhouse gas emissions has a planetary warming impact.
- The emissions affects only partially the country that emits.
- Hence, the emissions reach inefficiently high levels.
- There are attempts at international agreements, but there is still an incentive to breach.

Per capita CO₂ emissions, 2023

Carbon dioxide (CO₂) emissions from fossil fuels and industry. Land-use change is not included.

The social cost of carbon for individual countries in dollars per ton of carbon dioxide emissions. | Nature Climate Change

THE TRAGEDY OF THE COMMONS: EXAMPLE

Consider a grazing area owned "in common" by all members of a village.

- Villagers graze cows on the common.
- When c cows are grazed, total milk production is f(c), where f'>0 and f"<0.

How should the villagers graze their cows so as to maximize their overall profit?

• How much cows will actually graze in the common area?

THE TRAGEDY OF THE COMMONS: EXAMPLE

The reason for the tragedy is that when a villager adds one more cow his profit rises (by f(c)/c - p) but every other villager's profit falls

• They create an externality, similar as with congestion

The villager who adds the extra cow takes no account of the loss inflicted upon the rest of the village

MORE EXAMPLES

Overfishing

Over-logging forests on public lands (e.g., Amazonia)

Over-intensive use of public parks (e.g., Yellowstone)

Urban traffic congestion

A consumer's reservation price for a unit of a good is his maximum willingness-to-pay (WTP) for it:

- Consumer's wealth is w
- Utility of not having the good is U(w,0).
- Utility of paying p for the good is U(w-p,1).
- Reservation price r is defined by

$$U(w,0) = U(w-r,1).$$

• Example: $U(x_1, x_2) = x_1(x_2 + 1)$.

When should a public good be provided?

- A public good costs c.
- Two consumers, A and B.
- Individual payments for providing the public good are X and Y.
- X+Y>c if the good is to be provided.
- Utility of the consumers depends on money and the public good provision.

Payments must be individually rational:

$$U_{\rm A}(w_{\rm A},0) \le U_{\rm A}(w_{\rm A}-X,1)$$

 $U_{\rm B}(w_{\rm B},0) \le U_{\rm B}(w_{\rm B}-Y,1).$

Reservation prices must be higher than the necessary payments

• Otherwise, it not feasible to supply the public good

If the inequalities are strict, then the public good provision is a Pareto improvement

FREE-RIDING

Suppose A reservation price is higher than c, but B reservation price is lower than c

• Then, A would supply the good even if B made no contribution.

B can enjoy the good for free: <u>B is a free-rider</u>.

Free-riding – consumers avoid buying a public good (and bearing the cost thereof), hoping that they can use the good that has been bought/provided by someone else

FREE-RIDING

Suppose now that reservation prices of both, A and B, are lower than c

• Then, neither A nor B will supply the good alone.

Yet, if the sum of their reservation prices exceeds the cost then it is a Paretoimprovement for the good to be supplied.

A and B may try to free-ride on each other, causing no good to be supplied

FREE-RIDING: EXAMPLE

Suppose A and B each have just two actions – individually supply a public good or not

- Cost of supply c = \$100.
- Payoff to A from the good's supply = \$80.
- Payoff to B from the good's supply = \$65.

80 + 65 > 100, so supplying the good is Pareto-improving

But they take the decisions about the good's supply (purchase) individually.

(Don't buy, Don't buy) is a unique Nash equilibrium. But it is not Pareto-efficient.

FREE-RIDING: EXAMPLE

Now assume that the consumers do not need to take the decisions individually, but they can purchase the good together.

- E.g., A contributes \$60 and B contributes \$40.
- Payoff to A from the good = 80-60 = \$20 > \$0.
- Payoff to B from the good = 65-40 = \$25 > \$0.

Two Nash equilibria: (Contribute, Contribute) and (Don't contribute, Don't contribute).

FREE-RIDING: EXAMPLE

Allowing contributions makes supply of a public good possible, although no individual will supply the good alone.

- But what contribution scheme is best?
- Free-riding can persist even with contributions.

The more money is contributed to a public good, the better quality/the larger amount the public good will have.

• E.g., more TV programs broadcast, a larger area of a national park.

c(G) is the production cost of G units of a public good.

Two individuals, A and B, with money w_A , w_B .

Private consumptions are x_A and x_B

Budget allocations must satisfy

$$x_{\mathbf{A}} + x_{\mathbf{B}} + c(G) = w_{\mathbf{A}} + w_{\mathbf{B}}.$$

Pareto efficiency condition for the public good supply: $|MRS_A| + |MRS_B| = MC(G).$

 MRS_A and MRS_B are A and B's marginal rates of substitution between the public good and the private consumption.

 So MRS denotes the marginal willingness-to-pay (in terms of decreasing the private consumption) for an extra unit of the public good.

Why is the Pareto efficiency condition for the public good supply: $|MRS_A| + |MRS_B| = MC(G)$

- The public good is non-rival in consumption, so one extra unit of the public good is fully consumed by both A and B.
- $|MRS_A| + |MRS_B|$ is the total payment by A and B of the private good that preserves both utilities if G is changed by one unit.
- $|MRS_A| + |MRS_B|$ indicates, e.g., how much of the private good will A and B give up together in order get one more unit of the public good G?

Suppose $|MRS_A| + |MRS_B| < MC(G)$.

- The marginal cost of one more unit of the public good is higher than the amount A and B would pay for the unit.
- Reduction of G is a Pareto improvement.

In the opposite case: increase of G is a Pareto improvement.

Suppose there are n consumers; i = 1,...,n. Then, the efficient public good supply requires"

$$\sum_{i=1}^{n} |\mathrm{MRS}_{i}| = \mathrm{MC}(G).$$

EFFICIENT SUPPLY

Let us consider two individuals with quasilinear preferences:

$$U_i(x_i, G) = x_i + f_i(G); i = A, B.$$

EFFICIENT SUPPLY

Let us consider two individuals with quasilinear preferences:

$$U_i(x_i, G) = x_i + f_i(G); i = A, B.$$

EFFICIENT SUPPLY

Let us consider two individuals with quasilinear preferences:

$$U_i(x_i, G) = x_i + f_i(G); i = A, B.$$

Efficient supply:

$$p_G^* = MU_A(G^*) + MU_B(G^*)$$

PUBLIC GOODS AND MARKET SOLUTIONS

Decentralised market solutions (which are so much preferred by economists) do not work well in allocating public goods.

- People cannot acquire different amounts of a public good (e.g., national defense).
- They need to decide on a common amount.
- The amount of a public good supplied in equilibrium is too small compared to the effective supply of the good.