Do numerical probabilities promote informed stated preference responses under inherent uncertainty?

Insight from a coastal adaptation choice experiment

Christos Makriyannis Suffolk University

Robert J. Johnston

Clark University

<u>Ewa Zawojska</u> University of Warsaw

ewa.zawojska@uw.edu.pl

Stated preference methods

- Provide estimates of economic value of non-market goods (e.g., clean air)
- Help determine the value of a good to society
 - Estimates of benefits for benefit-cost analyses
 - The value of losses from environmental damages (e.g., loss of recreation opportunities after oil spill)
- Wide range of applications: transportation, health, environment, culture, etc.
- Value estimates derived from preferences stated in surveys
 - Typically large survey studies on representative samples of respondents
 - Preferences are often elicited through discrete choice experiments

(1) Uncertainty in scientific models and predictions

(2) Uncertainty in the effectiveness of policy interventions

(3) Inherent ur	5		
(CHOOSE ONLY ONE) I vote for	I vote for NO NEW ACTION	I vote for PROTECTION OPTION A	I vote for PROTECTION OPTION B

Inherent outcome uncertainty (tied to ecological systems)

- Uncertainty that is invariant across policy scenarios
- Example: The effect of installing new coastal flood defenses depends on a probability of severe storms that is fixed in the study area
- Very little attention in the stated preference literature
- Most surveys provide no formal communication of inherent uncertainty
- Often (unstated) assumptions that scenario outcomes are certain, that presented attribute levels reflect expected values, etc.
- These assumptions can have important implications for the interpretation and validity of value estimates
- <u>To our knowledge, there have been no tests of **inherent** uncertainty communication formats for stated preference studies</u>

Our research question:

Do numerical probabilities help respondents make more informed choices in stated preference surveys under inherent uncertainty?

Data – discrete choice experiment

- Policy scenario: coastal flood adaptation to protect homes and natural systems such as beaches and wetlands from flooding and erosion
- In Old Saybrook, Connecticut, USA
- The survey distributed via mail
- May July 2014
- 282 complete surveys returned

PROTECTION OPTION A and **PROTECTION OPTION B** are possible protection options for . Old Saybrook. **NO NEW ACTION** shows what is expected to occur with no additional protection.

Methods and Effects of Protection	Result in 2020s with NO NEW ACTION	Result in 2020s with PROTECTION OPTION A	Result in 2020s with PROTECTION OPTION B	
	No Change in Existing Defenses	More Emphasis on HARD Defenses	More Emphasis on HARD Defenses	
Homes Flooded in Category 2 Storm	28% 1,411 of 5,034 homes expected to flood in a Category 2 storm	20% 1,007 of 5,034 homes expected to flood in a Category 2 storm	20% 1,007 of 5,034 homes expected to flood in a Category 2 storm	
Homes Flooded Only in Category 3+ Storm	23% 1,174 of 5,034 homes expected to flood only in a Category 3+ storm	27% 1,359 of 5,034 homes expected to flood only in a Category 3+ storm	19% 956 of 5,034 homes expected to flood only in a Category 3+ storm	
Wetlands Lost	5% 25 of 497 wetland acres expected to be lost	2% 10 of 497 wetland acres expected to be lost	2% 10 of 497 wetland acres expected to be lost	
Beaches and Dunes Lost	10% 3 of 30 beach acres expected to be lost	16% 5 of 30 beach acres expected to be lost	10% 3 of 30 beach acres expected to be lost	
Seawalls and Coastal Armoring	24% 12 of 50 miles of coast armored	24% 12 of 50 miles of coast armored	35% 18 of 50 miles of coast armored	
S Cost to Your Household per Year	\$0 Increase in annual taxes or fees	\$35 Increase in annual taxes or fees	\$155 Increase in annual taxes or fees	
HOW WOULD YOU VOTE? (CHOOSE ONLY ONE) I vote for	l vote for NO NEW	I vote for PROTECTION	I vote for PROTECTION OPTION B	

- Three choice tasks per respondent
- We focus on the inherent uncertainty related to the protection of homes vulnerable to flooding during storms of different intensities (the Saffir-Simpson Hurricane Wind Scale)
- These storms have some inherent probabilities of occurrence
- The storm probabilities do not vary across the protection scenarios (not included as an attribute)
- The effect of flood adaptation measures depends on the inherent storm probabilities

Two survey versions

- Storm probabilities may be characterized by:
 - historical frequencies (common in media)
 - numerical percentage probabilities (common in stated preference surveys)
- Two versions of the survey that differ <u>only</u> in the uncertainty communication

• (1) Without numerical probabilities

 describes only historical frequencies of Category 2 and 3 storms (and asks about respondents' subjective assessments of the probabilities)

• (2) With numerical probabilities

 provides identical information on historical frequencies but also translates these frequencies into numerical percentage probabilities

Two survey versions

Over the last 75 years, Old Saybrook has been struck by **Category 2 storms in 1960, 1985 and 1991**, and by **Category 3 storms in 1938 and 1954**. There have been no Category 4 or 5 storms. Although hurricane Sandy was a Category 2 storm off the New Jersey coast, it weakened to below hurricane intensity before it reached Connecticut.

Without numerical probabilities

Based on past storm events, scientists estimate that there is approximately a 55% (or about one in two) chance that a Category 2 storm will strike Old Saybrook at least once by the mid 2020s (0% would mean there is no chance and 100% would mean it is absolutely certain).

In contrast, scientists estimate that there is approximately a **20% (or one in five) chance that a Category 3 or higher storm will strike Old Saybrook at least once by the mid-2020s** (0% would mean there is no chance and 100% would mean it is absolutely certain).

Econometric approach

- Each model is pooled—estimated on samples from the two survey versions
- In willingness-to-pay (WTP) space: Parameters represent willingness-to-pay values in dollars per year
- Random parameters logit heterogeneous preferences described by continuous distributions of WTP parameters (all normal, except for the log-normal cost)

$$U_{ph}(\cdot) = \lambda_h (\boldsymbol{\omega}'_h \boldsymbol{X}_{ph} - \boldsymbol{C}_{ph}) + \varepsilon_{ph}$$

- An additional variable to capture systematic variation in preferences associated with the survey version ($Num_h = 1$ for numerical probabilities); $\omega_h = \omega_h^* + \rho Num_h$
- Latent class heterogeneous preferences described by discrete distributions – Three classes
 - Variable *Num_h* used to explain class membership probabilities

Random parameters logit

in willingness-to-pay (WTP) space

Choice	Mean WTP	Standard	Means interacted with
attributes	estimates	deviations	"numerical probabilities"
Status aug	-4.83***	10.34***	0.04
<i>Status</i> 400	(1.24)	(3.01)	(0.48)
Homesa	-1.38**	4.18***	0.35
	(0.63)	(1.18)	(0.68)
Homeso	-1.23*	4.47***	-0.44
	(0.64)	(1.23)	(0.73)
Motlands	-1.32*	3.64***	-0.17
wellunus	(0.74)	(0.99)	(0.88)
Reaches	-0.24	3.07***	-0.95
Deuches	(0.42)	(0.83)	(0.61)
Sogwalls	-0.59	1.17***	0.50
Jeuwalls	(0.38)	(0.33)	(0.39)
Hard	-1.47**	2.16***	0.66
<i>пи</i> и	(0.66)	(0.59)	(0.61)
Soft	-0.56	3.00***	0.47
	(0.52)	(0.87)	(0.56)
Cost	0.46	1.99***	0.33
- COSt	(0.53)	(0.43)	(0.47)

LL at convergence	-678.50
LL at constant(s) only	-883.88
AIC/n	1.8422
BIC/n	2.2094
Number of observations	805
Number of Sobol draws	6,000

- Mean WTP estimates with expected signs
- Substantial preference heterogeneity and not strongly significant means for parameters
- No effect of presenting numerical probabilities
- Can a latent class model better capture this heterogeneity?

Latent class model

in willingness-to-pay (WTP) space

Attributes	ttributes Class 1		Class 3	
Status quo	0.44**	-2.76***	1.55	
	(0.22)	(0.44)	(1.16)	
Homes 2	1.3 ^{8***}	-0.50***	-0.34	
	(0.35)	(0.17)	(0.50)	
Homes 3	0.75*	-0.57***	-0.42	
	(0.40)	(0.19)	(0.67)	
Wetlands	0.14	-0.60**	-0.83	
	(0.43)	(0.27)	(0.68)	
Beaches	1.07***	-0.28**	-0.02	
	(0.31)	(0.14)	(0.38)	
Seawalls	0.51***	-0.28*	0.14	
	(0.16)	(0.16)	(0.28)	
Hard	-0.51***	-0.54**	-0.23	
	(0.09)	(0.24)	(0.71)	
Soft	0.43***	-0.19	0.63	
	(0.09)	(0.19)	(0.58)	
-Cost -31.54		1.07***	1.51*	
(51.54)		(0.21)	(0.81)	

LL at converg	ence	-681.09
LL at constan	-883.88	
AIC/n		1.7692
BIC/n		1.9498
Number of ob	805	
Class 1	Class 3	
embership probabilit	y function	

Class membersh			
Constant	-1.44***	0.68***	
	(0.43)	(0.19)	
"Numerical	1.03**	-0.14	
probabilities"	(0.52)	(0.29)	
Average class pr	robabilities		
	13%	57%	30%

• Standard neoclassical tradeoffs, in line with expectations

~

• "Numerical probabilities" do not influence the probability of being in this class

Latent class model

in willingness-to-pay (WTP) space

Attributes	Class 1	Class 2	Class 3
Status quo	0.44**	-2.76***	1.55
	(0.22)	(0.44)	(1.16)
Homes 2	1.38***	-0.50***	-0.34
	(0.35)	(0.17)	(0.50)
Homes 3	0.75*	-0.57***	-0.42
	(0.40)	(0.19)	(0.67)
Wetlands	0.14	-0.60**	-0.83
	(0.43)	(0.27)	(0.68)
Beaches	1.07***	-0.28**	-0.02
	(0.31)	(0.14)	(0.38)
Seawalls	0.51***	-0.28*	0.14
	(0.16)	(0.16)	(0.28)
Hard	-0.51***	-0.54**	-0.23
	(0.09)	(0.24)	(0.71)
Soft	0.43***	-0.19	0.63
	(0.09)	(0.19)	(0.58)
– Cost	-31.54	1.07***	1.51*
	(51.54)	(0.21)	(0.81)

LL at convergence	-681.09
LL at constant(s) only	-883.88
AIC/n	1.7692
BIC/n	1.9498
Number of observations	805

	Class 1	Class 2	Class 3
Class membersh			
Constant	-1.44***	0.68***	
	(0.43)	(0.19)	
"Numerical	1.03**	-0.14	
probabilities"	(0.52)	(0.29)	
Average class pr	robabilities		
	13%	57%	30%

- Pay attention only to cost
- A common pattern that some do not care about climate change adaptation measures and their environmental effects

Latent class model

in willingness-to-pay (WTP) space

Attributes	Class 1	Class 2	Class 3		L	L at converge	ence	-681.09
Status quo	0.44** (0.22)	-2.76*** (0.44)	1.55 (1.16)	AIC/n BIC/n			-003.00 1.7692	
Homes 2	1.38*** (0.35)	-0.50*** (0.17)	-0.34 (0.50)	-	Number of observations			805
Homes 3	0.75*	-0.57***	-0.42	-	Class manhar	Class 1	Class 2	Class 3
	(0.40)	(0.19)	(0.0/)	_ <u>Class membership probability function</u>				
Wetlands	(0.43)	(0.27)	(0.68)		Constant	-1.44^^^ (0.43)	(0.19)	
Pagchas	1.07***	-0.28**	-0.02	-	"Numerical	1.03**	-0.14	
Deuches	(0.31)	(0.14)	(0.38)	_	probabilities"	(0.52)	(0.29)	
Segwalls	0.51***	-0.28*	0.14		Average class p	robabilities		
Jeuwalls	(0.16)	(0.16)	(0.28)	_		13%	57%	30%
Hard	-0.51*** (0.09)	-0.54** (0.24)	Signs for many Highly random	y paramete	ers are opposit	te to expect	tations;	
Soft	0.43***	-0.19	ringing randon	i choices				
<i>50j1</i>	(0.09)	(0.19)	Choices incons	sistent with	h standard neo	oclassical as	ssumption	s; These
-Cost	-31.54	1.07***	could be peop	le who wer	re confused, re	ejected scer	narios, pro	tested, etc
	(51.54)	(0.21)	• "Numerical pr	obabilities'	" increase the	probability	of being ir	n this class

Conclusions

Do numerical probabilities promote informed stated preference responses under inherent uncertainty?

• Not necessarily

- The use of numerical probabilities to communicate inherent uncertainty leads to more "randomness" in stated preferences
- This may suggest increased symptoms of scenario rejection, protest responses, confusion, among others
- Our findings contradict a common (perhaps naïve) expectation that the use of numerical probabilities necessarily enhances the validity of stated preferences
- Numerical probabilities may not always be an effective way to communicate inherent uncertainty in environmental stated preference questionnaires

THANKYOU!

Christos Makriyannis

Suffolk University

Robert J. Johnston

Clark University

<u>Ewa Zawojska</u>

University of Warsaw

ewa.zawojska@uw.edu.pl