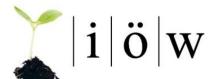
ELICITING CONSEQUENTIALITY IN STATED PREFERENCE SURVEYS: AN APPLICATION TO URBAN GREEN


Ewa Zawojska

University of Warsaw

Malte Welling

Institute for Ecological Economy Research

ewa.zawojska@uw.edu.pl

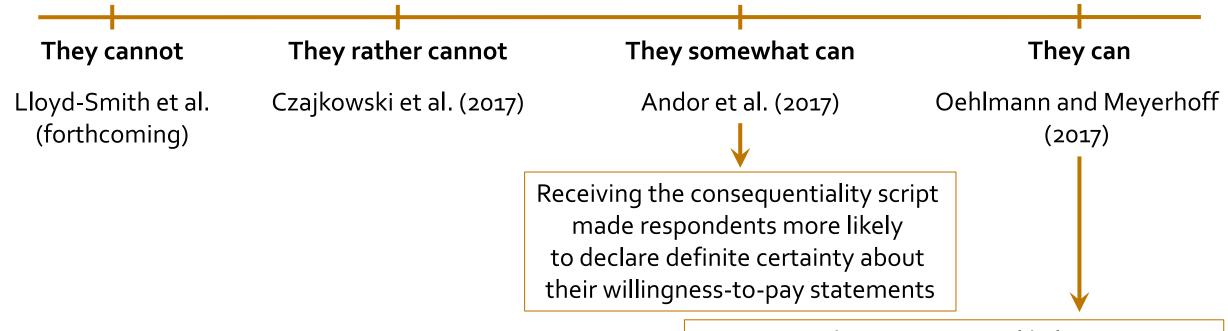
Julian Sagebiel

Technische Universität Berlin

Stated preference methods

- Widely used to measure the value of non-market goods, especially public goods
- In transportation, marketing, health, culture, environmental economics, ...
- Based on surveys
- Many advantages:
 - Capture use and passive-use values
 - Go beyond the scope of the existing data
- But also important disadvantages:
 - Not based on market behavior
 - Might be viewed as not related to direct consequences
 - Incentive properties insufficiently understood

Do stated preferences represent well true preferences?


A necessary condition: Consequentiality

- Literature defines conditions for truthful preference disclosure (Carson and Groves 2007; Carson et al. 2014; Vossler et al. 2012; Vossler and Holladay 2018)
- One of the conditions: The survey is or is viewed as consequential
- "a survey's results are seen by the agent as potentially influencing an agency's actions and the agent cares about the outcomes of those actions" (Carson and Groves 2007)

Controlling for consequentiality in surveys

- **Communicated consequentiality** researchers communicate in the script (potential) consequences of the survey outcome
- **Perceived consequentiality** respondents are directly asked about their belief in the survey consequentiality (actual consequences of the survey outcome)
- ullet Difficulties in credibly assuring respondents about the consequentiality via scripts ullet
- Keeping consequentiality vague on purpose (e.g., when the presented project is preliminary and policy-makers prefer not to make definite statements)
- The need for elicitation of consequentiality perceptions
- How to correctly elicit consequentiality perceptions?

Can consequentiality perceptions be induced with a survey script?

Respondents were more likely to view the survey as at least somewhat consequential when the consequentiality script was provided

Controlling for consequentiality in surveys

- **Communicated consequentiality** researchers communicate in the script (potential) consequences of the survey outcome
- **Perceived consequentiality** respondents are directly asked about their belief in the survey consequentiality (actual consequences of the survey outcome)
- ullet Difficulties in credibly assuring respondents about the consequentiality via scripts ullet
- Keeping consequentiality vague on purpose (e.g., when the presented project is preliminary and policy-makers prefer not to make definite statements)
- The need for elicitation of consequentiality perceptions
- How to correctly elicit consequentiality perceptions?

Controlling for consequentiality in surveys

- **Communicated consequentiality** researchers communicate in the script (potential) consequences of the survey outcome
- **Perceived consequentiality** respondents are directly asked about their belief in the survey consequentiality (actual consequences of the survey outcome)
- ullet Difficulties in credibly assuring respondents about the consequentiality via scripts ullet
- Keeping consequentiality vague on purpose (e.g., when the presented project is preliminary and policy-makers prefer not to make definite statements)
- The need for elicitation of consequentiality perceptions
- How to correctly elicit consequentiality perceptions?
 - Guidance in this area is very limited

How are consequentiality perceptions elicited?

Typically...

- A single general question: To what extent do you believe that the survey outcome will affect the decision of public authorities?
- Response format a discrete (Likert) scale, from two to several levels
- Location of the consequentiality elicitation after preference elicitation (the only exception – Lloyd-Smith et al. forthcoming)

How are consequentiality perceptions elicited?

Typically...

- A single general question: To what extent do you believe that the survey outcome will affect the decision of public authorities?
- Response format a discrete (Likert) scale, from two to several levels
- Location of the consequentiality elicitation after preference elicitation (the only exception – Lloyd-Smith et al. forthcoming)

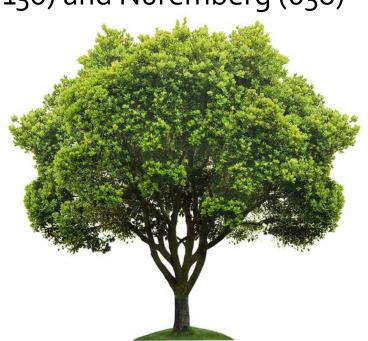
Our focus here

Our research questions

Does it matter for stated consequentiality perceptions and for stated preferences:

 where the consequentiality elicitation is placed (before versus after preference elicitation)? → Location

Yes


 whether the consequentiality elicitation is repeated or not (asked before and after preference elicitation versus asked only after)?

Yes

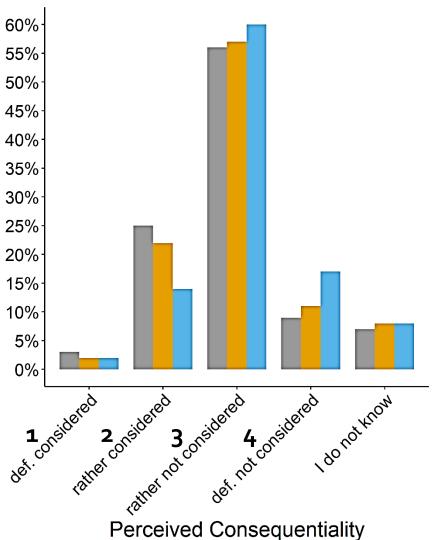
 \rightarrow Repetition

Research design

- A city-wide policy project of the extension of urban green
- Four German cities: Augsburg (559), Karlsruhe (479), Leipzig (1,130) and Nuremberg (638)
- Computer-Assisted Web Interviews (CAWI)
- 9 choice tasks per respondent
- July and November 2018

	Option 1	Option 2	Current state	
Street trees	5 trees per 100 meters of a street	9 trees per 100 meters of a street	5 trees per 100 meters of a street	
Green areas	25% of the city area is green spaces	20% of the city area is green spaces	20% of the city area is green spaces	
Near-natural green areas	30% of the green areas is near-natural	40% of the green areas is near-natural	20% of the green areas is near-natural	
Pedestrian and cycling greenways	60% of the ways are greenways	50% of the ways are greenways	40% of the ways are greenways	
Cost for you per year	€300	€100	No cost	
Which option do you choose?				

Note: The tasks were originally displayed in German. Here a translation is provided.


Research design – consequentiality elicitation

- "To what degree do you believe that your responses will be taken into account in policy and administration?"
- A Likert response scale: "definitely considered", "rather considered", "rather not considered", "definitely not considered" and "I do not know"
- Two treatments:
 - Asked-Once the consequentiality question asked right after the preference elicitation
 - Asked-Twice the consequentiality question asked before and after the preference elicitation
 - o Respondents were not informed that they would be asked twice

Econometric approach

- How is stated consequentiality affected by the way the perceptions are elicited?
 - → Ordered logit models
- Does the effect of consequentiality perceptions on stated preferences differ depending on the way the perceptions are elicited?
 - → Mixed logit models in willingness-to-pay space
- Perceived consequentiality coded as a variable with four levels:
 - -1 the strongest perceived consequentiality ("definitely considered")
 - -4 the weakest perceived consequentiality ("definitely not considered")
 - "I do not know" consequentiality statements are omitted in modelling

Consequentiality perceptions

Sample and Question Position

Asked Twice - Before
Asked Twice - After
Asked Once - After

- Strongest stated consequentiality when asked before preference elicitation
- Weakest stated consequentiality when asked only once (after preference elicitation)

Is stated consequentiality affected by the perception elicitation?

Ordered logit models

perception consequentiality stated

	Model 1	Model 2	Model 3
Dependent variable	Responses to both consequentiality questions	Responses to the consequentiality question asked as first	Responses to the consequentiality question asked after preference elicitation
Sample	Asked-Twice	All	All
Before	-0.246*** (0.049)		
Asked-Twice		-0.764*** (0.082)	-0.493*** (0.081)
Male Age	0.055 (0.104) 0.003 (0.003)	1.029 (0.080) ation .002 (0.003)	Repetition
Secondary or elementary High-school University	within-sample test -0.442 (0.398)	between-sample test -0.270 (0.258)	0.126 (0.270) -0.163 (0.268) -0.228 (0.267)
Augsburg Online Augsburg Postal Karlsruhe Online Karlsruhe Postal	Respondents asked twice state stronger consequentiality in the first question	Consequentiality is stronger when stated before choice tasks	Consequentiality after choice tasks is stronger if respondents are asked twice
Leipzig	0.178 (0.133)	0.129 (0.105)	- Choice consistency?
Number of observations	2,514	2,600	2,580

consequential

	Model 1	Model 2	Model 3	
Dependent variable	Responses to both consequentiality quest	-	Responses to the consequentiality question asked after preference elicitation	
Sample	Asked-Twice	All	All	
Before	-0.246*** (0.049)			
Asked-Twice		-0.764*** (0.082)	-0.493*** (0.081)	
Male	0.055 (0.104)	-0.029 (0.080)	0.080 (0.081)	
Age	0.003 (0 <mark>.003)</mark>	0.002 (0.003)	0.003 (0. <mark>003)</mark>	
Secondary or elementary High-school University	-0.061 (c Red -0.382 (c -0.442 (c	ruitment via postcards st the perceived consequer – Self-selection?	,	
Augsburg Online	0.084 (0.178)	0.016 (0.142)	0.128 (0.143)	
Augsburg Postal	-0.515*** (0.196)	-0.526 ^{***} (0.160)	-0.496*** (0.160)	
Karlsruhe Online	-0.101 (0.190)	-0.285** (0.141)	-0.222 (0.144)	
Karlsruhe Postal	-0.550** (0.219)	-0.568*** (0.196)	-0.677*** (0.196)	
Leipzig	0.178 (0.133)	0.129 (0.105)	0.106 (0.106)	
Number of observations	2,514	2,600	2,580	

Notes: ***, **, and * indicate 1%, 5%, and 10% significance levels, respectively. Standard errors are given in brackets (for Model 1 clustered by respondents).

- Mixed logit models in willingness-to-pay (WTP) space; separately for each city
- Non-monetary preference parameters from a normal distribution, the cost preference parameter from a lognormal distribution
- Perceived consequentiality used as a continuous variable, normalized to have zero mean and unit standard deviation
- Mean preference parameters interacted with perceived consequentiality
- 3 models interactions with consequentiality stated:
 - before choice tasks by the asked-twice sample
 - after choice tasks by the asked-twice sample
 - after choice tasks by the asked-once sample

Here, for Leipzig only

	Model I	Model II	Model III	
Sample	Asked-Twice	Asked-Twice	Asked-Once	
Means interacted with	Before	After	After	
Means				
Status quo (1)	-0.11 (0.03)***	-0.01 (0.03)	-0.30 (0.03)***	
Street trees (1)	0.07 (0.01)***	0.07 (0.01)***	0.04 (0.01)***	
Green areas (1)	1.79 (0.29)***	1.58 (0.27)***	0.58 (0.23)**	
Near-natural green (1)	0.84 (0.14)***	0.81 (0.12)***	0.86 (0.10)***	
Greenways (1)	1.27 (0.11)***	1.19 (0.12)***	0.76 (0.10)***	
A negative of Cost (1)	1.57 (0.15)***	1.43 (0.10)***	1.58 (0.12)***	
Standard Deviations				

- Perceived consequentiality mainly shifts respondents' preferences regarding Status quo
- When perceived consequentiality gets stronger, the disutility from the current state intensifies

Interactions with perceived consequentiality							
Status quo (3)	0.20 (0.02)***	0.08 (0.03)**	0.21 (0.03)***				
Street trees (3)	0.00 (0.01)	-0.01 (0.01)	0.00 (0.01)				
Green areas (3)	-0.13 (0.20)	-0.78 (0.28)***	0.34 (0.21)*				
Near-natural green (3)	-0.08 (0.12)	-0.27 (0.13)**	0.24 (0.12)**				
Greenways (3)	-0.16 (0.10)	0.09 (0.12)	-0.08 (0.10)				
A negative of Cost (3)	0.10 (0.09)	0.11 (0.08)	0.02 (0.09)				

• To answer this, we formally test for statistical differences in the coefficients on the means and the interaction terms across the three models using z-tests

	H ₀ : Model I – Model II = 0			H ₀ : Model I – Model III = 0			H ₀ : Model II – Model III = 0					
	Mos	· nc	Intera	ctions	Mas		Interac	tions	Mar		Intera	ctions
	Means		(perc. cons.)		Means		(perc. cons.)		Means		(perc. cons.)	
Status quo	-0.095	**	0.119	***	0.196	***	-0.015		0.291	***	-0.135	***
Street trees	0.002		0.012		0.026	***	-0.002		0.025	***	-0.014	
Green areas	0.206		0.647	*	1.201	***	-0.473	*	0.995	***	-1.120	***
Near-natural green	0.031		0.188		-0.018		-0.322	*	-0.048		-0.511	***
Greenways	0.084		-0.244		0.510	***	-0.081		0.426	***	0.163	

Notes: The numbers inform on values of the differences between respective coefficients. The differences were calculated as indicated in the first row of the table.

	Model I	Model II	Model III
Sample	Asked-Twice	Asked-Twice	Asked-Once
Means interacted with	Before	After	After

	H ₀ : Model I – Model II = 0				
	Means		Interac	tions	
			(perc. cons.)		
Status quo	-0.095	**	0.119	***	
Street trees	0.002		0.012		
Green areas	0.206		0.647	*	
Near-natural green	0.031		0.188		
Greenways	0.084		-0.244		

- A within-sample test Models I and II use the same (Asked-Twice) sample
- Except for Status quo, no significant differences, which aligns with the expectation (the same respondents)
- Weaker effect of consequentiality on *Status quo* preferences when stated after choice tasks

Notes: The numbers inform on values of the differences between respective coefficients. The differences were calculated as indicated in the first row of the table.

- A between-sample test
- Mean WTP values differ for nearly all attributes
- On average, WTP of respondents who faced the consequentiality elicitation before choice tasks are higher than WTP of respondents who did not
- Consequentiality elicitation before preference elicitation positively influences WTP

Model II	Model III
Asked-Twice	Asked-Once
After	After

	H₀: Mode	el I – M	odel III = 0	H ₀ : Model II – Model III = 0					
Means		Interactions		Mea	ans		Interactions		
			(<u>perc</u> . c	ons.)			(perc. cons.)		
	0.196	***	-0.015		0.291	***	-0.135	***	
	0.026	***	-0.002		0.025	***	-0.014		
	1.201	***	-0.473	*	0.995	***	-1.120	***	
	-0.018		-0.322	*	-0.048		-0.511	***	
	0.510	***	-0.081		0.426	***	0.163		

Notes: The numbers inform on values of the differences between respective coefficients. The differences were calculated as indicated in the first row of the table.

	Model I	Model II	Model III
Sample	Asked-Twice	Asked-Twice	Asked-Once
Means interacted with	Before	After	After

- The effect of a repeated consequentiality statement
- Significant differences as in column 2 (both comparisons employ the same samples of respondents)
- Some significant differences in the impact of perceived consequentiality on WTP (interactions)
- With the repeated consequentiality elicitation, WTP seems to increase with the strength of consequentiality perception
- With the single consequentiality elicitation, WTP appears to decrease with the degree of consequentiality belief

H₀: Model	II – Model	III = 0
-----------	------------	---------

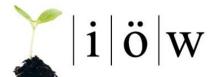
Means		Interactions	
		(perc. cons.)	
0.291	***	-0.135	***
0.025	***	-0.014	
0.995	***	-1.120	***
-0.048		-0.511	***
0.426	***	0.163	

icients. The differences were

Conclusions

- The way how consequentiality perceptions are elicited seems to matter for both, stated consequentiality and stated preferences
 - "How" = here, the location and the repetition of consequentiality elicitation
- Eliciting consequentiality perceptions after preference elicitation generates more conservative value measures and consequentiality statements
- Important practical implications
- Willingness-to-pay values are recently increasingly corrected by consequentiality perceptions
- Our findings show that these corrections might be sensitive to the way perceived consequentiality data is collected
- Our evidence suggests caution in designing the consequentiality elicitation
- The result may point to endogeneity of consequentiality statements

THANKYOU!


Ewa Zawojska

University of Warsaw

Malte Welling

Institute for Ecological Economy Research

Julian Sagebiel

Technische Universität Berlin

ewa.zawojska@uw.edu.pl