IS THERE REALLY A DIFFERENCE BETWEEN "CHOICE EXPERIMENTS" AND "CONTINGENT VALUATION"?

Patrick Lloyd-Smith, Ewa Zawojska, Wiktor (Vic) Adamowicz

University of Alberta, Canada

University of Warsaw, Poland

ezawojska@wne.uw.edu.pl

- help determine public's preferences
- provide estimates of economic value
- inform about the benefits for cost-benefit analysis
- are based on surveys
- use various formats

- help determine public's preferences
- provide estimates of economic value
- inform about the benefits for cost-benefit analysis
- are based on surveys
- use various formats

"Contingent valuation" (CV)

Respondents vote on a proposed change at a specified cost.

"Choice experiment" (CE)

Respondents indicate their preference among two or more multi-attribute alternatives.

- help determine public's preferences
- provide estimates of economic value
- inform about the benefits for cost-benefit analysis
- are based on surveys
- use various formats

"Contingent valuation" (CV)

Respondents vote on a proposed change at a specified cost.

"Choice experiment" (CE)

Respondents indicate their preference among two or more multi-attribute alternatives.

Would you be willing to pay \$5 per year for the proposed program of building new hiking and bike trails?

Yes / No

Which program would you prefer?

	Program A	Program B
New hiking trails	None	100 km
New bike trails	None	250 km
Cost per year	\$ O	\$5

"Contingent valuation" (CV)

"Choice experiment" (CE)

CV and CE are often described as differing in many aspects:

- ullet the number of choice alternatives ullet only two in CV, any (sensible) number in CE
- the number of choice situations
- the use of attributes
- information display

- turically are in CV assemble CF
- → typically one in CV, several in CE
- \rightarrow no in CV, yes in CE
- \rightarrow text in CV, table in CE

Would you be willing to pay \$5 per year for the proposed program of building new hiking and bike trails?

Yes / No

Which program would you prefer?

	Program A	Program B
New hiking trails	None	100 km
New bike trails	None	250 km
Cost per year	\$ 0	\$5

"Contingent valuation" (CV)

"Choice experiment" (CE)

CV and CE are often described as differing in many aspects:

- the number of choice alternatives \rightarrow only two in CV, any (sensible) number in CE
- the number of choice situations \rightarrow typically one in CV, several in CE
- the use of attributes \rightarrow no in CV, yes in CE
- ullet information display ullet text in CV, table in CE
- Carson and Louviere (2011): "Most early CV studies ... asked respondents about their valuation of multiple goods and they valued changes in attributes".
- Both typically-named "CV" and "CE" are discrete choice methods.
- The only real difference is information display.

"Contingent valuation" (CV)

"Choice experiment" (CE)

CV and CE are often described as differing in many aspects:

- the number of choice alternatives \rightarrow only two in CV, any (sensible) number in CE;
- the number of choice situations \rightarrow typically one in CV, several in CE;
- the use of attributes \rightarrow no in CV, yes in CE;
- information display \rightarrow text in CV, table in CE.
- Carson and Louviere (2011): "Most early CV studies ... asked respondents about their valuation of multiple goods and they valued changes in attributes".
- Both typically-named "CV" and "CE" are discrete choice methods.
- The only real difference is information display.

"Contingent valuation" (CV)

"Choice experiment" (CE)

CV and CE are often described as differing in many aspects:

- the number of choice alternatives \rightarrow only two in CV, any (sensible) number in CE;
- the number of choice situations \rightarrow typically one in CV, several in CE;
- the use of attributes \rightarrow no in CV, yes in CE;
- information display \rightarrow text in CV, table in CE.

Our research question:

- Is there really a difference between "CV" and "CE"? (in terms of elicited preferences)
- Does information display affect respondents' behavior?

Why is it important to study?

- Stated preference methods are of considerable <u>research and policy interest</u> (e.g. natural resource damage assessment). (Bishop et al. 2017)
- Can they provide valid and reliable estimates to inform decision making?
- Many studies tested <u>convergence</u> of estimates from "CV" and "CE". (e.g., Hanley et al. 1998; Cameron et al. 2002; Ryan 2004; Jin et al. 2006; Goldberg and Rosen 2007)
 - Evidence is mixed.
 - The comparisons are often not apples to apples (differ in the number of attributes, alternatives, choice tasks, in econometric methods, etc.)
 - The studies did not isolate the effect of information display.

Research design

- An induced-value lab experiment in Z-tree
- July 2017 at the University of Alberta, Canada
- Based on the study of Jacquemet et al. (2016)

Research design Jacquemet et al. (2016) — Table treatment

Characteristic	Token A	Token B
Colour	Yellow	Blue
Size	Large	Medium
Shape	Triangle	Square
Cost	3.00	4.00
	l .	

Which token would you like to buy?

C Token A

C Token B

C Neither Token

Research design

Two Tokens are available, Token A and Token B. The colour of Token A is yellow, its size is large, and the shape of Token A is triangle. Token A costs 3.00. The colour of Token B is blue, its size is medium, and the shape of Token B is square. Token B costs 4.00.

Which token would you like to buy?

C Token A

C Token B

C Neither Token

Research design

- An induced-value lab experiment in Z-tree
- July 2017 at the University of Alberta, Canada
- Based on the study of Jacquemet et al. (2016)

Size	Small	\$0.50
	Medium	\$2.50
	Large	\$4.00
Colour	Red	\$1.00
	Yellow	\$1.50
	Blue	\$2.00
Shape	Circle	\$1.50
	Triangle	\$3.00
	Square	\$6.00

Table treatment

Characteristic	Token A	Token B
Colour	Yellow	Blue
Size	Large	Medium
Shape	Triangle	Square
Cost	3.00	4.00

Text treatment

Two Tokens are available, Token A and Token B. The colour of Token A is yellow, its size is large, and the shape of Token A is triangle. Token A costs 3.00. The colour of Token B is blue, its size is medium, and the shape of Token B is square. Token B costs 4.00.

- 9 choice tasks
- Earnings: 10 CAD + balance from a randomly selected choice task (0 9.50 CAD)
- Average earning: 16.04 CAD / 30 min; 12 sessions; 58 participants in Table, 57 in Text

Research question:

Does information display affect respondents' behavior?

Research question:

Does information display affect respondents' behavior?

	Table	Text
Correct responses	87%	87%
Average time per task	36 sec	48 sec

Research question:

Does information display affect respondents' behavior?

	Table	Text
Correct responses	87%	87%
Average time per task	36 sec	48 sec

Verification:

Can we replicate the results of Jacquemet et al. (2016)?

Table: proportion (in %) of correct choices by treatment

Exp. 1	Exp. 2	Exp. 3	Exp. 4	Exp. 5	Exp. 6	Exp. 7
Baseline	Calc.	Paid	Paid+Calc.	Truth	Task	Office
56.3	61.6	59.9	64.9	78.3	63.7	61.6

CORRECT RESPONSES

Probability of a correct response

A random effects logit model

Note: *** - 1% significance, ** - 5%, * - 10%.

Dependent variable – A response: 1 – correct, o – incorrect

(0.404)

	Coefficient (St. Error)	
Text	-0.131 (0.358)	← No influence of the information display
Responded in up to 20 sec	-1.134*** (0.342)	← Lower chance of a correct choice for quicker responders
Round	0.115*** (0.043)	← Learning / Experience
Absolute difference in the tokens' value	0.256*** (0.049)	← Easier to make a correct choice when tokens differ more in value
Morning session	-0.617* (0.356)	← Tough mornings
Constant	1.548***	Log likelihood (constants only) as a

Log-likelihood (constants only) -359.2

Log-likelihood -335.5

Probability of a correct response in the first round

A logit model

Dependent variable – A response: 1 – correct, o – incorrect

-	
	Coefficient
	(St. Error)
Text	-1.322**
TEXT	(0.557)
Responded in	-2.135***
up to 20 sec	(0.802)
Absolute difference	0.215*
in tokens' value	(0.111)
Constant	1.456***
Constant	(0.559)

Log-likelihood (constants only) -57.1

Log-likelihood -49.8

← Lower chance of a correct choice in Text

RESPONSETIME

Quicker responses in Table

	Table	Table	Text	Text
Responded in	Yes	No	Yes	No
up to 20 sec	165	INO	165	INO
Share of	21%	7006	-06	0.50%
participants	2190	79%	5%	95%
Correct	71%	0106	67%	89%
responses	/190	91%	0/90	09%

More rushed responses in Table

	Table	Table	Text	Text	
Calculated	Yes	No	Yes	No	
monetary values	165	INO	165	INO	
Share of participants	83%	17%	75%	25%	← Similar.
Correct responses	91%	64%	90%	78%	← Even if they did not calculate,
Average time per response	40 sec	19 sec	48 sec	49 sec	they devoted substantial time to figure out the correct respon
		↑			and succeeded in that.

When they did not calculate, they rushed through questions.

- Is it easier to oversimplify the task in Table?
- Hoehn et al. (2010) claim that tabular descriptions can sometimes oversimplify the scenario.

to figure out the correct response,

Response time A random effects linear model

	Means	Interactions with Text
	(St. Error)	(St. Error)
Round	-6.255***	3.819**
	(1.338)	(1.918)
Round squared	0.556***	-0.482***
	(0.128)	(0.182)
Calculated monetary	20.692***	-21.564***
value	(5.449)	(7.278)
Absolute difference	-1.285***	-0.076
in tokens' value	(0.305)	(0.435)
No time pressure (longest	0.139***	0.044
response time in a session)	(0.032)	(0.046)
Constant	26.401***	22.331**
	(7.015)	(9.681)

Log-likelihood (constants only) -4,597.0

Log-likelihood -4,485.5

Response time

A random effects linear model

	Means	Interactions with Text
	(St. Error)	(St. Error)
Round	-6.255***	3.819**
	(1.338)	(1.918)
Round squared	0.556***	-0.482***
	(0.128)	(0.182)
Calculated monetary	20.692***	-21.564***
value	(5.449)	(7.278)
Absolute difference	-1.285***	-0.076
in tokens' value	(0.305)	(0.435)
No time pressure (longest	0.139***	0.044
response time in a session)	(0.032)	(0.046)
Constant	26.401***	22.331**
	(7.015)	(9.681)

- A non-linear effect of *Round*: Response time decreases to about the 5th round and then starts to increase.
- Calculating monetary values considerably increases response time.
- Shorter response time for a larger difference in tokens' value.
- Longer response time when others answer slowly.

Log-likelihood (constants only) -4,597.0

Log-likelihood -4,485.5

Response time

A random effects linear model

	Means	Interactions with Text
	(St. Error)	(St. Error)
Round	-6.255***	3.819**
	(1.338)	(1.918)
Round squared	0.556***	-0.482***
	(0.128)	(0.182)
Calculated monetary	20.692***	-21.564***
value	(5.449)	(7.278)
Absolute difference	-1.285***	-0.076
in tokens' value	(0.305)	(0.435)
No time pressure (longest	0.139***	0.044
response time in a session)	(0.032)	(0.046)
Constant	26.401***	22.331**
	(7.015)	(9.681)
. 191 191 17 1.5		

- Response time in Text differs because of differences in the influence of *Round* and *Calculated monetary value*.
- The effect of Round on response time in Text is weaker than in Table, and nearly linear.
- Calculating monetary value does not have an effect on response time in Text.

Log-likelihood (constants only) -4,597.0

Log-likelihood -4,485.5

Findings

1) Information display does not affect the ability to provide a correct response.

• Except for the first round in which Text results in a significantly smaller probability of a correct response than Table.

2) Information display affects response time.

- Quicker responses in Table.
- More rushed (quick and incorrect) responses in Table.
- In Text, response time decreases over rounds. In Table, the effect is non-linear: response time decreases until about the 5th round, is constant for a while and starts to increase.

Conclusions

IS THERE REALLY A DIFFERENCE BETWEEN "CV" AND "CE"?

• No, in terms of preference disclosure (except for the first choice task)

• Yes, in terms of response time

Conclusions

IS THERE REALLY A DIFFERENCE BETWEEN "CV" AND "CE"?

• No, in terms of preference disclosure (except for the first choice task)

This is an encouraging result, pointing to convergent validity of "CV" and "CE".

This is important in the light of a *single* binary choice question being the recommended format in preference elicitation tasks.

"whatsoever things are true"

Patrick Lloyd-Smith, <u>Ewa Zawojska</u>, Wiktor Adamowicz

ezawojska@wne.uw.edu.pl