# CAN ALTERNATIVE NON-MARKET VALUE ELICITATION METHODS REVEAL THE SAME VALUES?

Christian A. Vossler University of Tennessee



Ewa Zawojska University of Warsaw



#### Non-market value elicitation methods

- Provide estimates of economic value of non-market goods (e.g., clean air)
- Evaluate benefits needed for cost-benefit assessments
- Are based on preferences stated in surveys
- Use various formats for value elicitation

#### Non-market value elicitation methods

- Provide estimates of economic value of non-market goods (e.g., clean air)
- Evaluate benefits needed for cost-benefit assessments
- Are based on preferences stated in surveys → Stated preference methods
- Use various formats for value elicitation

#### Non-market value elicitation methods

- Provide estimates of economic value of non-market goods (e.g., clean air)
- Evaluate benefits needed for cost-benefit assessments
- Are based on preferences stated in surveys → Stated preference methods
- Use various formats for value elicitation

Would you be willing to pay \$5 annually for the proposed program of reducing carbon concentrations?
Yes / No

What is the maximum amount you would be willing to pay annually for the proposed program of reducing carbon concentrations?

### Elicitation effects: A threat to validity

- Common finding: Different formats generate different value estimates.
- This signals a failure of convergent validity.
- Many explanations for elicitation effects:
  - Incentive properties, strategic responding (Carson and Groves, 2007)
  - Response uncertainty (Welsh and Poe, 1998)
  - Anchoring (Green et al., 1998)
  - Social norms and quality signals (Hanemann, 1995)
  - Statistical methods (Huang and Smith, 1998)
- Hundreds of studies document elicitation effects, but far from consensus.

→ so-called "elicitation effects"

#### Elicitation effects: A puzzle

- <u>Induced-value</u> experiments find <u>little evidence of elicitation effects</u>.
  - Vossler and McKee (2006): compare SBC, PC and MBDC
  - Carson, Chilton and Hutchinson (2009): compare SBC and DB
  - Collins and Vossler (2009): compare two- and three-option choice tasks
  - Messer et al. (2010): compare SBC and OE

 This is in stark contrast to field (and other lab) studies based on <u>home-grown values</u>, which <u>usually evidence elicitation effects</u>.

#### How to explain the puzzle?

• The induced-value experiments were incentive compatible, while home-grown value studies were not typically.

**Incentive compatibility** means truthful preference revelation is the dominant strategy.

- A single binary choice (yes-no) question is the gold standard for incentive compatibility.
- (But there are efficiency loses related to the use of this format.)
- Respondents should view a survey as consequential (not entirely hypothetical).

• ...

#### How to explain the puzzle?

• The induced-value experiments were incentive compatible, while home-grown value studies were not typically.

**Incentive compatibility** means truthful preference revelation is the dominant strategy.

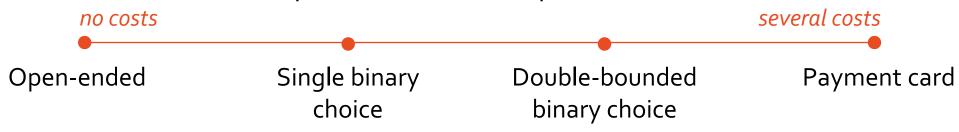
- A single binary choice (yes-no) question is the gold standard for incentive compatibility.
- (But there are efficiency loses related to the use of this format.)
- Respondents should view a survey as consequential (not entirely hypothetical).

• ...

Can we obtain the same (home-grown) values under incentive compatible conditions?

#### Our study

- A lab experiment that incorporates important properties of field studies:
  - Elicitation of home-grown values
  - Evaluation of a **public**, environmental **good** with a large share of **passive-use value**
  - Ambiguity over cost of the good's provision
- Four popular elicitation formats compared:
  - Single binary choice
  - Double-bounded binary choice
  - Payment card
  - Open-ended
- Held fixed:
  - incentive properties (incentive compatibility assured)
  - framing, the decision rule, and the payment method


#### Experimental design: Valuation scenario

- We partnered with organization GreenTrees, who carries out tree-planting projects in the Mississippi River Valley.
- The proposal is for the session group to fund the planting and maintenance of 160 trees.
- Participants are provided with an overview of reforestation benefits and specific estimates of what 160 trees means in terms of increased water storage, avoided nutrient runoff and captured CO<sub>2</sub>.
- If it cost you \$x, are you in favor of funding the tree planting project?



#### Experimental design: Treatments

A continuum from no explicit cost to several possible costs



- Held fixed across treatments:
  - Framing as a referendum with a majority-vote implementation rule
  - Ambiguity as to whether the individual cost varies across participants
  - Pre-negotiated total cost; the cost share in place as needed
  - Incentive compatibility all mechanisms translate into a single, binding yes/no vote (Azrieli, Chambers and Healy, 2018)

## Experimental design: Single binary choice

- "If passage of the referendum cost you \$x, are you in favor of funding the tree planting project?"
- Cost randomly drawn from vector {\$1, \$2, \$3, \$4, \$5, \$6}.
- Referendum passes if more than half vote "yes".

### Experimental design: Double-bounded binary choice

- "If passage of the referendum cost you \$x, are you in favor of funding the tree planting project?"
- Participants face two referenda, which vary only by cost.
  - Cost randomly drawn from vector {\$1, \$2, \$3, \$4, \$5, \$6}.
  - Participant receives higher (lower) cost in the second referendum if she voted "yes" ("no") in the first one.
  - For the first referendum, the two extreme costs are excluded.
- One of the two referenda is selected at random as binding.
- The randomly selected referendum passes if more than half vote "yes".

# Experimental design: Payment card

- "If passage of the referendum cost you \$x, are you in favor of funding the tree planting project?"
- On a single decision screen, participants vote yes/no separately for 11 different cost amounts (separate referenda): \$0, \$1, \$2, ..., \$10.
- One of the costs (referenda) is selected at random as binding.
- The randomly selected referendum passes if more than half vote "yes".

# Experimental design: Open-ended

- "What is the highest amount that you would pay and still vote in favor of funding the tree planting project?"
- Described as a way to learn the range of possible costs for which the person would vote "yes" or "no".
- Random Price Voting Mechanism (Messer et al., 2010)
  - It translates the open-ended response to a yes/no vote at a specific cost.
  - Cost is randomly drawn from a distribution ambiguous to participants.
  - If the open-ended response is equal to or higher than the drawn cost, this is a "yes" vote.
- Referendum passes if more than half vote "yes".

### Experimental design: Procedures

- 1) Two "real effort" tasks:
  - Counting zeros in large zero-one matrices (Abeler et al., 2011)
  - Encoding words into numbers (Erkal et al., 2011)
  - Scores added up and rank-ordered
  - Participants paid according to their performance quintile: from \$15 to \$25
- 2) The valuation task
- 3) Post-experiment questionnaire
- Experiment programmed using the software z-Tree (Fischbacher, 2007)
- 410 students of the University of Tennessee; 18 sessions; 16-24 participants per session
- 40 minutes; Average earnings \$19.79
- Referendum passed in 7 sessions

#### Summary statistics by treatment

No significant differences across treatments

|                        | Single binary choice | Open-ended | Double-bounded binary choice | Payment card |
|------------------------|----------------------|------------|------------------------------|--------------|
| Age                    | 20.65                | 20.79      | 20.80                        | 20.53        |
|                        | (3.31)               | (1.51)     | (2.79)                       | (2.29)       |
| Female                 | 0.45                 | 0.48       | 0.41                         | 0.37         |
|                        | (0.50)               | (0.50)     | (0.50)                       | (0.49)       |
| Earned income          | 19.77                | 19.79      | 19.84                        | 19.79        |
|                        | (3.54)               | (3.49)     | (3.49)                       | (3.49)       |
| Employed               | 0.46                 | 0.48       | 0.58                         | 0.47         |
|                        | (0.50)               | (0.50)     | (0.50)                       | (0.50)       |
| GPA                    | 3.19                 | 3.36       | 3.34                         | 3.22         |
|                        | (0.57)               | (0.43)     | (0.50)                       | (0.50)       |
| Number of participants | 130                  | 94         | 92                           | 94           |

*Note*: Standard errors given in brackets.

### Empirical survival functions

Shares of "yes" votes for each cost amount

| Cost        | Single binary choice | Open-ended | Double-bounded binary choice | Payment card |
|-------------|----------------------|------------|------------------------------|--------------|
| <b>\$0</b>  |                      |            |                              | 82.98        |
| <b>\$1</b>  | 79.17                | 84.04      | 87.32                        | 74.47        |
| \$2         | 72.73                | 71.28      | 75.00                        | 67.02        |
| \$3         | 61.90                | 59.58      | 56.58                        | 56.38        |
| \$4         | 50.00                | 42.55      | 50.67                        | 41.49        |
| \$5         | 33-33                | 35.11      | 31.94                        | 36.17        |
| \$6         | 25.00                | 17.02      | 20.55                        | 20.21        |
| <b>\$</b> 7 |                      | 13.83      |                              | 17.02        |
| \$8         |                      | 9.58       |                              | 12.77        |
| \$9         |                      | 8.51       |                              | 12.77        |
| \$10        |                      | 8.51       |                              | 12.77        |

#### Empirical survival functions

Shares of "yes" votes for each cost amount

| Cost       | Single binary choice | Open-ended | Double-bounded binary choice | Payment card |  |
|------------|----------------------|------------|------------------------------|--------------|--|
| <b>\$0</b> |                      |            |                              | 82.98        |  |
| <b>\$1</b> | 79.17                | 84.04      | 87.32                        | 74.47        |  |
| \$2        | 72.73                | 71.28      | 75.00                        | 67.02        |  |
| \$3        | 61.90                | 59.58      | 56.58                        | 56.38        |  |

- To non-parametrically test for differences across the distributions, we use two-sample Kolmogorov-Smirnov tests.
- The test statistic is the absolute value of the largest difference in the observed probabilities across two distributions.
- The largest observed difference, across all pairwise comparisons, is between the double-bounded and payment-card treatments at \$1.
- But we cannot reject the equality of the distributions.

#### Parametric data analysis

- Non-parametric analysis is problematic for estimating mean willingness-to-pay (WTP) values.
- A model of WTP that interprets responses in an internally consistent way:
  - Treatments give rise to a mix of continuous, binary-censored and interval-censored data.
  - We assume  $WTP_i^*$  ~  $Normal(\mathbf{x}_i\boldsymbol{\beta}, \sigma_i^2)$ .
  - We estimate an interval regression model.
  - Error variance is allowed to differ across treatments.

$$\ln \mathcal{L} = \sum_{i=1}^{N} \left\{ D_i \cdot \ln \Phi \left( \left( \frac{c_{i,u} - \mathbf{x}_i \boldsymbol{\beta}}{\sigma_i} \right) - \left( \frac{c_{i,l} - \mathbf{x}_i \boldsymbol{\beta}}{\sigma_i} \right) \right) + (1 - D_i) \cdot \ln \left( \frac{1}{\sigma_i} \phi \left( \frac{WTP_i - \mathbf{x}_i \boldsymbol{\beta}}{\sigma_i} \right) \right) \right\}$$

# Parametric data analysis

|                                 | (1)     | (2)     | (3)     |
|---------------------------------|---------|---------|---------|
| Open-ended                      | -0.25   | -0.18   | -0.36   |
|                                 | (0.65)  | (0.61)  | (0.62)  |
| Double-bounded binary choice    | -0.10   | 0.00    | -0.09   |
|                                 | (0.68)  | (0.62)  | (0.62)  |
| Payment card                    | -0.13   | -0.03   | 0.07    |
|                                 | (0.65)  | (0.56)  | (0.55)  |
| Age                             |         |         | 0.25*** |
|                                 |         |         | (0.09)  |
| Female                          |         |         | 1.05**  |
|                                 |         |         | (0.44)  |
| Earned income                   |         |         | -0.07   |
|                                 |         |         | (0.06)  |
| Employed                        |         |         | 0.15    |
|                                 |         |         | (0.44)  |
| GPA                             |         |         | 0.50    |
|                                 |         |         | (0.42)  |
| Constant                        | 3.94*** | 3.84*** | 3.89*** |
|                                 | (0.48)  | (0.38)  | (0.39)  |
| Standard deviation function (σ) |         |         |         |
| Open-ended                      |         | 1.24    | 1.36*   |
|                                 |         | (0.81)  | (0.79)  |
| Double-bounded binary choice    |         | 0.89    | 0.81    |
|                                 |         | (0.99)  | (0.96)  |
| Payment card                    |         | 0.65    | 0.47    |
|                                 |         | (0.81)  | (0.78)  |
| Constant                        | 4.15*** | 3.23*** | 3.19*** |
|                                 | (0.23)  | (0.73)  | (0.71)  |
| Log-L                           | -669.13 | -667.92 | -659.55 |
| Number of observations          | 410     | 410     | 410     |

|                | (1)     | (2)     | (3)     | Parametric               | data    | anal    | vcic    |  |
|----------------|---------|---------|---------|--------------------------|---------|---------|---------|--|
| Open-ended     | -0.25   | -0.18   | -0.36   | Parametric data analysis |         |         |         |  |
|                | (0.65)  | (0.61)  | (0.62)  |                          |         |         |         |  |
| Double-bounded | -0.10   | 0.00    | -0.09   |                          |         |         |         |  |
|                | (0.68)  | (0.62)  | (0.62)  |                          |         |         |         |  |
| Payment card   | -0.13   | -0.03   | 0.07    |                          |         |         |         |  |
|                | (0.65)  | (0.56)  | (0.55)  |                          |         |         |         |  |
| Age            |         |         | 0.25*** |                          | (1)     | (2)     | (3)     |  |
|                |         |         | (0.09)  | Standard deviation (σ)   |         |         |         |  |
| Female         |         |         | 1.05**  | Open-ended               |         | 1.24    | 1.36*   |  |
|                |         |         | (0.44)  |                          |         | (0.81)  | (0.79)  |  |
| Earned income  |         |         | -0.07   | Double-bounded           |         | 0.89    | 0.81    |  |
|                |         |         | (0.06)  |                          |         | (0.99)  | (0.96)  |  |
| Employed       |         |         | 0.15    | Payment card             |         | 0.65    | 0.47    |  |
|                |         |         | (0.44)  |                          |         | (0.81)  | (0.78)  |  |
| GPA            |         |         | 0.50    | Constant                 | 4.15*** | 3.23*** | 3.19*** |  |
|                |         |         | (0.42)  |                          | (0.23)  | (0.73)  | (0.71)  |  |
| Constant       | 3.94*** | 3.84*** | 3.89*** | Log-L                    | -669.13 | -667.92 | -659.55 |  |
|                | (0.48)  | (0.38)  | (0.39)  | No. of observations      | 410     | 410     | 410     |  |

|                | (1)     | (2)     | (3)     | Parametric o                                   | data    | anal    | vcic    |
|----------------|---------|---------|---------|------------------------------------------------|---------|---------|---------|
| Open-ended     | -0.25   | -0.18   | -0.36   | Parametric data analysis                       |         |         |         |
|                | (0.65)  | (0.61)  | (0.62)  |                                                |         |         |         |
| Double-bounded | -0.10   | 0.00    | -0.09   | No statistical evidence of elicitation effects |         |         |         |
|                | (0.68)  | (0.62)  | (0.62)  |                                                |         |         |         |
| Payment card   | -0.13   | -0.03   | 0.07    |                                                |         |         |         |
|                | (0.65)  | (0.56)  | (0.55)  |                                                |         |         |         |
| Age            |         |         | 0.25*** |                                                | (1)     | (2)     | (3)     |
|                |         |         | (0.09)  | Standard deviation (σ)                         |         |         |         |
| Female         |         |         | 1.05**  | Open-ended                                     |         | 1.24    | 1.36*   |
|                |         |         | (0.44)  |                                                |         | (0.81)  | (0.79)  |
| Earned income  |         |         | -0.07   | Double-bounded                                 |         | 0.89    | 0.81    |
|                |         |         | (0.06)  |                                                |         | (0.99)  | (0.96)  |
| Employed       |         |         | 0.15    | Payment card                                   |         | 0.65    | 0.47    |
|                |         |         | (0.44)  |                                                |         | (0.81)  | (0.78)  |
| GPA            |         |         | 0.50    | Constant                                       | 4.15*** | 3.23*** | 3.19*** |
|                |         |         | (0.42)  |                                                | (0.23)  | (0.73)  | (0.71)  |
| Constant       | 3.94*** | 3.84*** | 3.89*** | Log-L                                          | -669.13 | -667.92 | -659.55 |
|                | (0.48)  | (0.38)  | (0.39)  | No. of observations                            | 410     | 410     | 410     |

#### Summary and discussion

- Controlling for incentives, but allowing for possible behavioral factors, we find no evidence of elicitation effects across a wide range of value elicitation formats.
- Possible implications:
  - Difference in incentive properties for field applications may be of first-order importance.
  - It may be possible to design field studies to eliminate or dampen incentive effects.
- Further extensions: Systematically relax controls to parallel field conditions
  - A majority-vote implementation rule (e.g., keeping the decision rule undisclosed)
  - Common knowledge of the random cost selection
  - Students vs. representative samples

#### Christian A. Vossler University of Tennessee



cvossler@utk.edu

Ewa Zawojska University of Warsaw



ezawojska@wne.uw.edu.pl