REWARDING TRUTHFUL-TELLING IN STATED PREFERENCE STUDIES

Pierre-Alexandre Mahieu University of Nantes, France

Romain Crastes
University of Leeds, United Kingdom

Jordan Louviere
University of South Australia, Australia

<u>Ewa Zawojska</u>

University of Warsaw, Poland University of Alberta, Canada

zawojska@ualberta.ca

Stated preference methods

- Used to determine <u>public's preferences</u>, especially towards non-market goods
- <u>Survey-based</u> in specially designed surveys respondents state what they would do
- Important for cost-benefit analysis allow to estimate the benefits
- <u>Flexible</u> enable valuation of hypothetical states

Stated preference methods

- Used to determine <u>public's preferences</u>, especially towards non-market goods
- <u>Survey-based</u> in specially designed surveys respondents state what they would do
- Important for cost-benefit analysis allow to estimate the benefits
- <u>Flexible</u> enable valuation of hypothetical states

BUT much scepticism whether survey responses reflect actual preferences

- Surveys are often hypothetical
- Empirical evidence on hypothetical bias
- Hypothetical bias typically results in overestimation of the benefits / values

Stated preference methods

- Used to determine <u>public's preferences</u>, especially towards non-market goods
- <u>Survey-based</u> in specially designed surveys respondents state what they would do
- Important for cost-benefit analysis allow to estimate the benefits
- <u>Flexible</u> enable valuation of hypothetical states

BUT much scepticism whether survey responses reflect actual preferences

- Surveys are often hypothetical
- Empirical evidence on hypothetical bias
- Hypothetical bias typically results in overestimation of the benefits / values

How to incentivise respondents to answer truthfully in surveys?

Conditions for truthful preference disclosure

Carson and Groves 2007, Carson et al. 2014

- 1. Respondents <u>understand</u> and answer <u>the question</u> being asked.
- 2. The survey is seen as a <u>take-it-or-leave-it offer</u>.
- 3. The survey involves a <u>yes-no</u> answer on a <u>single</u> project. (the Gibbard-Satterthwaite theorem)
- 4. The authority can enforce the payment (<u>coercive</u> payment).
- 5. The survey is perceived as <u>consequential</u>:
 - Respondents care about the good being valued.
 - Respondents believe that their responses affect the finally introduced policy.

Conditions for truthful preference disclosure

Carson and Groves 2007, Carson et al. 2014

- 1. Respondents <u>understand</u> and answer <u>the question</u> being asked.
- 2. The survey is seen as a <u>take-it-or-leave-it offer</u>.
- The survey involves a <u>yes-no</u> answer on a <u>single</u> project. (the Gibbard-Satterthwaite theorem)
- 4. The authority can enforce the payment (<u>coercive</u> payment).
- 5. The survey is perceived as <u>consequential</u>:
 - Respondents care about the good being valued.
 - Respondents believe that their responses affect the finally introduced policy.
- Very restrictive
- Limit efficiency a single binary question

Conditions for truthful preference disclosure

Carson and Groves 2007, Carson et al. 2014

- 1. Respondents <u>understand</u> and answer <u>the question</u> being asked.
- 2. The survey is seen as a <u>take-it-or-leave-it offer</u>.
- 3. The survey involves a <u>yes-no</u> answer on a <u>single</u> project. (the Gibbard-Satterthwaite theorem)
- 4. The authority can enforce the payment (<u>coercive</u> payment).
- 5. The survey is perceived as consequential:
 - Respondents care about the good being valued.
 - Respondents believe that their responses affect the finally introduced policy.

Recently developed for other formats


- A sequence of questions Vossler et al. 2012
- Open-ended format Holladay and Vossler 2016

But additional conditions are imposed – even more restrictions

As it is difficult to meet the conditions...

Alternative approaches

- <u>Cheap talk</u> scripts informing about hypothetical bias (Cummings and Taylor 1999)
- Oath respondents swear to tell the truth (Jacquemet et al. 2013)

- <u>Honesty priming</u> respondents complete a task involving honesty and truthfulness concepts (De-Magistris et al. 2013)
- Repetitive <u>reminder about</u> an <u>opt-out</u> / status quo option (Ladenburg and Olsen 2014)
- All of them are not grounded in economic theory.
- Theoretically, no difference is expected in the behaviors of respondents who answer surveys with and without any of the approaches.

Alternative approaches – limitations

- Lack of economic-based incentives
- Emphasise the hypothetical nature of the survey
- Mixed evidence on the effectiveness of the approaches

We propose a new tool to increase reliability of stated preference surveys.

+

Our approach

Lie detection
Information for the researcher

Monetary reward for respondents who answer truthfully *Economic-based incentives*

Our study

- Laboratory, computer-based experiment
- In February 2015, in Nantes, France
- Reforestation programme in Senegal and Peru
- Planted trees would help restore eroded lands (Restoration) or mitigate ongoing erosion (Protection)

	Programme 1	Programme 2	None of the programmes	Regular update with
Online information	No	Yes	←	photos and e-mails
Ecosystem service	Protection	Restoration		about the project
Country	Senegal	Peru		
Price to plant a tree	2 €	15€	—	- 2, 5, 10, 15 €
Your choice				

- 16 choice tasks per respondent
- 424 undergraduate students

Our study – three treatments

Baseline

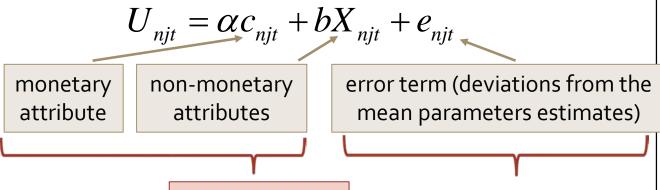
146 participants

Oath

137 participants
Asked to sign a form to swear to tell the truth

Lie detection

141 participants
Pulse measurement
with an oximeter;
Those suspected of lying
excluded from the
monetary reward


Reward for participation: a lottery at the end of the experiment in which one participant wins a gift voucher of 50 €

The treatments – additional remarks

- No significant differences in socio-demographics (gender, age, income) across treatments.
- Nobody refused to use the oximeter or to sign the oath form.
- Four participants suspected of lying were excluded.
- Lie detection based on:
 - always choosing Programme 1 or Programme 2,
 - taking very little time to complete the survey,
 - extremely high cardiac pulse rates.
- We excluded participants only when we had strong doubts.

Modelling approach

- Based on the random utility framework (McFadden 1974)
- Utility of consumer n from choosing alternative j in choice task t (U_{nit}):

• A consumer derives utility from:

observable characteristics and (rand

unobservable factors (random component)

- Our goal to examine the effects of oath and lie detection on:
 - Preferences the coefficient of the cost attribute
 - Randomness of respondents' choices the variance of the error term (scale)

Modelling approach

- Respondents were asked to report their level of stress when completing the survey. (from 1 to 10)
- In lie detection, respondents were asked to state how credible they think the device is. (from 1 to 10)
- These two aspects are indicators of respondent's (unobservable) engagement.
- They may affect stated preferences.
- They may also be affected by the treatment itself.

Potential endogeneity

Thus, we estimate a hybrid choice model.

Modelling approach

Hybrid Choice Model

- Incorporate <u>perceptions</u>, psychological factors into the random utility model
- Avoid endogeneity
- Enable to <u>model explicitly</u> the effect of an experimental condition on respondents' perceptions, and the effect of the perceptions on their (observed) choices
- A psychological factor involvement in the survey

Structural equation

(linear regression)

The latent variable is explained by respondents' socio-demographics.

Latent variable

(unobserved involvement in the survey)

Measurement equations

(linear regression)

The latent variable influences selfreports about stress and credibility.

Discrete choice model

(interactions in the mixed logit model)

The latent variable influences the preferences.

Measurement equations

- Dependent variables (continuous):
 - Indicator of experienced stress
 - Indicator of perceived credibility of lie detection

Both affected by latent involvement in a survey

• The likelihood for the indicators of stress is $L_{I_{stress}} = \phi \left[\frac{(\alpha - \beta_{stress} * LV)}{\sigma_{stress}} \right]$ and σ_{stress} are estimated.

	Coeff.	St. Err.	
β_{stress}	0.1041	0.0871	
σ_{stress}	1.7886	0.0710	***
$\beta_{\text{credibility}}$	1.5307	0.2430	***
$\sigma_{\text{credibility}}$	3.0132	0.2873	***

^{*** -} Significance at the 1% level.

- Latent involvement in the survey is positively correlated with self-reported measures of the credibility of lie detection.
- No significant relationship between involvement in the survey and stress
 difficult to measure stress.

Structural equation

• Dependent variable: Involvement in the survey (latent variable, LV)

	Coeff.	St. Err.	
Age	0.1471	0.0734	**
Age ²	0.0121	0.0041	***
Female	1.0650	0.3544	***
Income	-1.6361	1.0105	
Income ²	5.9715	1.8707	***

• Individual's socio-demographics influence unobservable involvement in the survey.

^{***, ** -} Significance at the 1% and 5% levels, respectively.

Discrete choice model

Random parameters model with scale covariates

Preference parameters

Covariates of scale

	Coeff.	St. Err.			Coeff.	St. Err.	
Status quo	-5.2782	0.8464	***	Oath	0.4681	0.5676	
Online	0.7684	0.0775	***	Lie detection	-0.7413	0.1911	***
Restoration	-0.0549	0.0875		Oath x LV	-0.3184	0.3528	
Senegal	0.0215	0.0546		Lie detection x LV	0.8908	0.3039	***
Price	-0.1774	0.0215	***		A		
Price x Oath	-0.1341	0.0913		On average, less uncertainty /			
Price x Oath x LV	0.0961	0.0476	**	randomness in respondents' choices in lie detection when combined with			
Price x Lie det.	-0.1190	0.0377	***				
Price x Lie det. x LV	0.0452	0.0188	**	involvement in the survey			

^{***, ** -} Significance at the 1% and 5% levels, respectively.

Discrete choice model

Random parameters model with scale covariates

Preference parameters

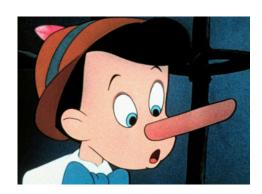
	Coeff.	St. Err.		
Status quo	-5.2782	0.8464	***	
Online	0.7684	0.0775	***	
Restoration	-0.0549	0.0875		
Senegal	0.0215	0.0546		
Price	-0.1774	0.0215	***	
Price x Oath	-0.1341	0.0913		
Price x Oath x LV	0.0961	0.0476	**	
Price x Lie det.	-0.1190	0.0377	***	
Price x Lie det. x LV	0.0452	0.0188	**	
***, ** - Significance at the 1% and 5% levels, respectively.				

Covariates of scale

	Coeff.	St. Err.	
Oath	0.4681	0.5676	
Lie detection	-0.7413	0.1911	***
Oath x LV	-0.3184	0.3528	
Lie detection x LV	0.8908	0.3039	***

- Lower willingess to pay in lie detection – smaller hypothetical bias?
- Involvement in a survey increases willingness to pay

Conclusions


- Rewarding truthfulness :
- 1) Based on economic theory
- 2) Easy to implement
- 3) Not indifferent to respondents
- How does it affect respondents' choices?
 - Lower randomness
 - Lower willingness to pay values

More considered responses?

- Possible limitations
 - People react differently when they know that they are observed
 - Some respondents doubted the effectiveness of lie detection
 - Respondents may want to comply with researchers' expectations

REWARDING TRUTHFUL-TELLING IN STATED PREFERENCE STUDIES

Ewa Zawojska zawojska@ualberta.ca

