A utility-based discrete choice model of satisficing behavior

Wiktor Budziński, Mikołaj Czajkowski

Motivation

- Stated preference methods are a leading tool for obtaining welfare measures for variety of environmental goods
- Discrete choice experiments are currently the most popular elicitation format
 - Allow for straightforward calculations of marginal WTP
 - Utilize a semi-panel structure to obtain more information from a single respondent

Discrete choice example

	Alternative 1	Alternative 2	Alternative 3	Alternative 4
Protection of				
ecologically valuable	Status quo	Status quo	Status quo	Substantial improvement
forests	Passive protection of 50% of the most ecologically valuable forests (1.5% of all forests)	Passive protection of 50% of the most ecologically valuable forests (1.5% of all forests)	Passive protection of 50% of the most ecologically valuable forests (1.5% of all forests)	Passive protection of 100% of the most ecologically valuable forests (3% of all forests, 100% increase)
Litter in forests	Status quo	Partial improvement	Status quo	Partial improvement
	No change in the amount of litter in the forests	Decrease the amount of litter in the forests by half (50% reduction)	No change in the amount of litter in the forests	Decrease the amount of litter in the forests by half (50% reduction)
Infrastructure	Status quo	Status quo	Partial improvement	Substantial improvement
	No change in tourist infrastructure	No change in tourist infrastructure	Appropriate tourist infrastructure in an additional 50% of the forests (50% increase)	Appropriate tourist infrastructure available in twice as many forests (100% increase)
Cost	0 PLN	10 PLN	25 PLN	100 PLN

Motivation

- Most models used to analyze data from DCE employ a random utility model (e.g. multinomial logit model)
 - Assume that individuals are rational, evaluate all alternatives and maximize their utility
 - Not very realistic in light of behavioral research
 - Allow for microeconomic inference
 - For example, welfare analysis using marginal rates of substitution, or willingness to pay
- Recently there is a growing interest in more behavioral models
 - Random regret minimization (Chorus et al., 2014)
 - Attribute-non-attendance (Scarpa et al., 2012)
 - Loss aversion (De Palma et al., 2008)
- Other heuristics are rarely investigated, as there is no modelling framework available

Satisficing

- Satisficing is a heuristics in which individual chooses alternative that is 'good enough'
 - Individuals do not maximize utility
 - They make decision based on some aspiration level of the objective function
- Information about all alternatives is not readily available
 - Discovered sequentially through a search process
 - Search can be costly (e.g. time/cognitive cost)

Satisficing

- In discrete choice modelling literature there were three applications of this heuristic to date
 - Stüttgen, Boatwright and Monroe (2012)
 - Sandorf and Campbell (2018)
 - González-Valdés and de Dios Ortúzar (2018)
- Previous work employs attribute based inference, usually leading to a non-compensatory choice process
 - Individual choose first alternative for which all attributes levels meet given criteria
 - Or individuals may have criteria for only one attribute e.g. "Choose first alternative that has cost lower than X PLN"

- We propose a novel framework based on random utility model
- We assume that individual's utility from choosing given alternative is additive and includes stochastic component

$$U_{ij} = \mathbf{X}_{ij}\mathbf{\beta}_i + \varepsilon_{ij}$$

- We also assume that individuals have 'satisficing threshold', ST_i , which describes their aspiration level for utility
 - In the sense, we built upon previous work on choice set formation

 Individual chooses first alternative for which utility exceeds satisficing threshold

	Alternative 1	Alternative 2	Alternative 3
Attribute 1	1	0	1
Attribute 2	2	3	1
Attribute 3	0	0	2

• Individual chooses first alternative for which utility exceeds satisficing

threshold

	Alternative 1	Alternative 2	Alternative 3
Attribute 1	1	0	1
Attribute 2	2	3	1
Attribute 3	0	0	2
	$U_{:1} < ST_{:}$		

 Individual chooses first alternative for which utility exceeds satisficing threshold

	Alternative 1	Alternative 2	Alternative 3
Attribute 1	1	0	1
Attribute 2	2	3	1
Attribute 3	0	0	2
	$U_{i1} < ST_i$	$U_{i2} > ST_i$	

 Individual chooses first alternative for which utility exceeds satisficing threshold

	Alternative 1	Alternative 2	Alternative 3
Attribute 1	1	0	1
Attribute 2	2	3	1
Attribute 3	0	0	2
	$U_{i1} < ST_i$	$U_{i2} > ST_i$	← Choice
			/

• Individual chooses first alternative for which utility exceeds satisficing

threshold

	Alternative 1	Alternative 2	Alternative 3
Attribute 1	1	0	1
Attribute 2	2	3	1
Attribute 3	0	0	2
	$U_{:1} < ST_{:}$		

 Individual chooses first alternative for which utility exceeds satisficing threshold

	Alternative 1	Alternative 2	Alternative 3
Attribute 1	1	0	1
Attribute 2	2	3	1
Attribute 3	0	0	2
	$U_{i1} < ST_i$	$U_{i2} < ST_i$	

 Individual chooses first alternative for which utility exceeds satisficing threshold

	Alternative 1	Alternative 2	Alternative 3
Attribute 1	1	0	1
Attribute 2	2	3	
Attribute 3	0	0	2
	$U_{i1} < ST_i$	$U_{i2} < ST_i$	$U_{i3} < ST_i$

• If none of the utilities exceed satisficing threshold, we assume that individual chooses the one with the highest utility

	Alternative 1 Al		Alternative 3
Attribute 1	1	0	1
Attribute 2	2	3	1
Attribute 3	0	0	2
Choice	$U_{i1} < ST_i$	$U_{i2} < ST_i$	$U_{i3} < ST_i$

If additionally:
$$U_{i1} > U_{i2} \wedge U_{i1} > U_{i3}$$

$$P(j | \boldsymbol{\beta}_{i}, ST_{i}) = \prod_{k=1}^{j-1} \exp(-\exp(\mathbf{X}_{ik}\boldsymbol{\beta}_{i} - ST_{i})) \left(1 - \exp(-\exp(\mathbf{X}_{ij}\boldsymbol{\beta}_{i} - ST_{i}))\right) + \prod_{k=1}^{K} \left(\exp(-\exp(\mathbf{X}_{ik}\boldsymbol{\beta}_{i} - ST_{i}))\right) \frac{\exp(\mathbf{X}_{ij}\boldsymbol{\beta}_{i})}{\sum \exp(\mathbf{X}_{ik}\boldsymbol{\beta}_{i})}$$

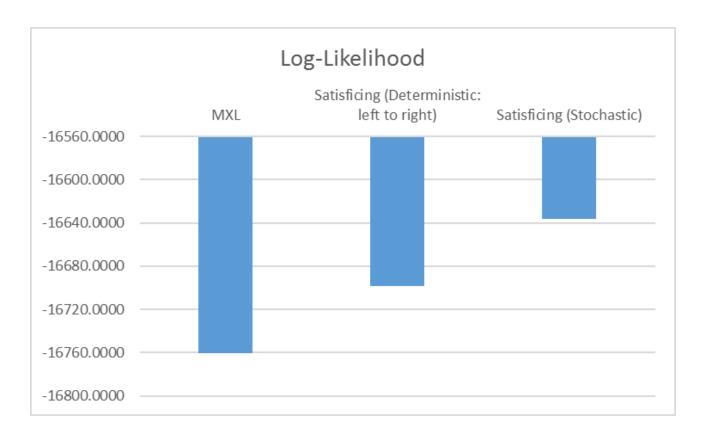
threshold

$$P(j | \boldsymbol{\beta}_{i}, ST_{i}) = \prod_{k=1}^{j-1} \exp\left(-\exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i} - ST_{i}\right)\right) \left(1 - \exp\left(-\exp\left(\mathbf{X}_{ij}\boldsymbol{\beta}_{i} - ST_{i}\right)\right)\right) + \prod_{k=1}^{K} \left(\exp\left(-\exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i} - ST_{i}\right)\right)\right) \frac{\exp\left(\mathbf{X}_{ij}\boldsymbol{\beta}_{i}\right)}{\sum \exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i}\right)}$$
Probability that
$$+ \prod_{k=1}^{K} \left(\exp\left(-\exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i} - ST_{i}\right)\right)\right) \frac{\exp\left(\mathbf{X}_{ij}\boldsymbol{\beta}_{i}\right)}{\sum \exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i}\right)}$$
previous alternatives do not exceed the

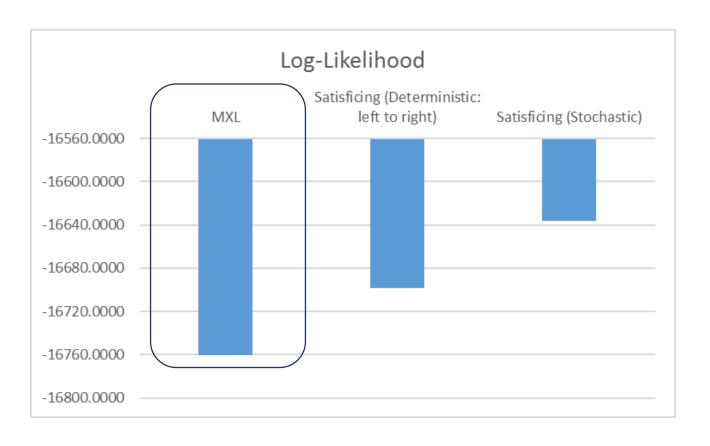
$$P(j | \boldsymbol{\beta}_{i}, ST_{i}) = \prod_{k=1}^{j-1} \exp\left(-\exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i} - ST_{i}\right)\right) \left(1 - \exp\left(-\exp\left(\mathbf{X}_{ij}\boldsymbol{\beta}_{i} - ST_{i}\right)\right)\right) + \prod_{k=1}^{K} \left(\exp\left(-\exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i} - ST_{i}\right)\right)\right) \frac{\exp\left(\mathbf{X}_{ij}\boldsymbol{\beta}_{i}\right)}{\sum \exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i}\right)}$$
Probability that
$$\frac{1}{k-1} \left(\exp\left(-\exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i} - ST_{i}\right)\right)\right) \frac{\exp\left(\mathbf{X}_{ij}\boldsymbol{\beta}_{i}\right)}{\sum \exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i}\right)}$$
alternative j does exceed the threshold

$$P(j \mid \boldsymbol{\beta}_{i}, ST_{i}) = \prod_{k=1}^{j-1} \exp\left(-\exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i} - ST_{i}\right)\right) \left(1 - \exp\left(-\exp\left(\mathbf{X}_{ij}\boldsymbol{\beta}_{i} - ST_{i}\right)\right)\right) + \prod_{k=1}^{K} \left(\exp\left(-\exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i} - ST_{i}\right)\right)\right) \frac{\exp(\mathbf{X}_{ij}\boldsymbol{\beta}_{i})}{\sum \exp(\mathbf{X}_{ik}\boldsymbol{\beta}_{i})}$$
none of the alternatives exceed the threshold

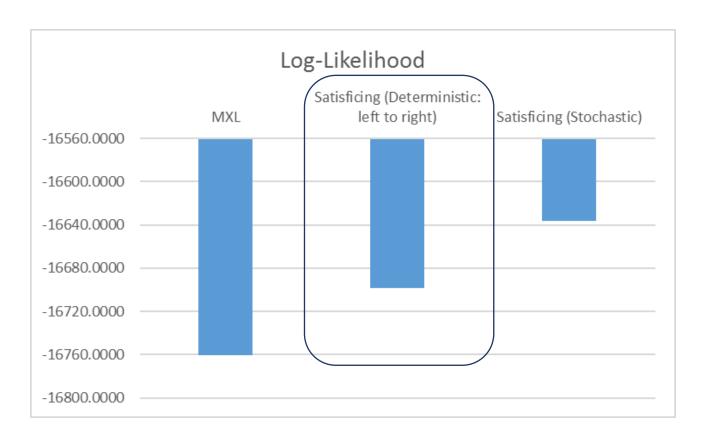
$$P(j | \boldsymbol{\beta}_{i}, ST_{i}) = \prod_{k=1}^{j-1} \exp\left(-\exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i} - ST_{i}\right)\right) \left(1 - \exp\left(-\exp\left(\mathbf{X}_{ij}\boldsymbol{\beta}_{i} - ST_{i}\right)\right)\right) + \prod_{k=1}^{K} \left(\exp\left(-\exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i} - ST_{i}\right)\right)\right) \underbrace{-\exp\left(\mathbf{X}_{ij}\boldsymbol{\beta}_{i}\right)}_{\text{exp}(\mathbf{X}_{ik}\boldsymbol{\beta}_{i})}$$
Probability that alternative j maximizes utility


- Preference heterogeneity can be easily incorporated
 - Similarly as in mixed logit
 - In current application we assume that all parameters are random and correlated (normally or log-normally distributed)
 - Satisficing threshold is also random and follows normal distribution
- Model is extended to incorporate stochastic satisficing
- If satisficing threshold is very large then model becomes a regular random utility model
 - Straightforward to test for satisficing behavior even in the field
- Marginal rates of substitution can be easily calculated as ratio of parameters

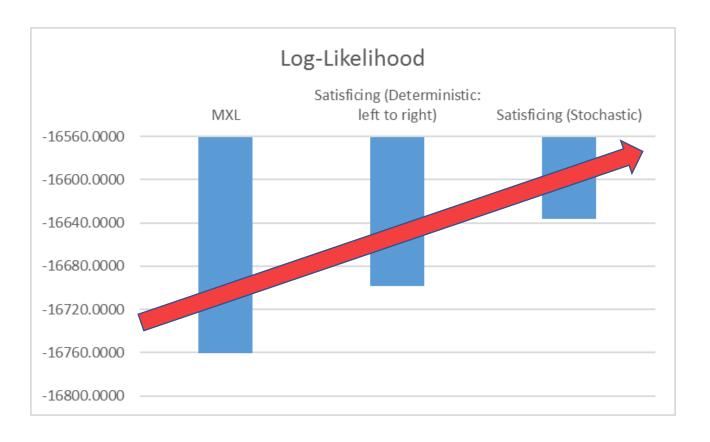
Data


- Discrete Choice Experiment conducted on representative sample of 1001 Poles
- Objective of the study was to analyze preferences towards different programs of forest management in Poland
- 4 attributes
 - Passive protection of most ecologically valuable forests (Levels: 50% (SQ), 75%, 100%)
 - Amount of litter (Levels: No change, 50% reduction, 90% reduction)
 - Infrastructure for tourists (Levels: No change, Infrastructure in 50% additional forests, Infrastructure in 100% additional forests)
 - Cost (Levels: 0, 10, 25, 50, 100 PLN annually)
- 4 alternatives (including status quo), 26 choice tasks

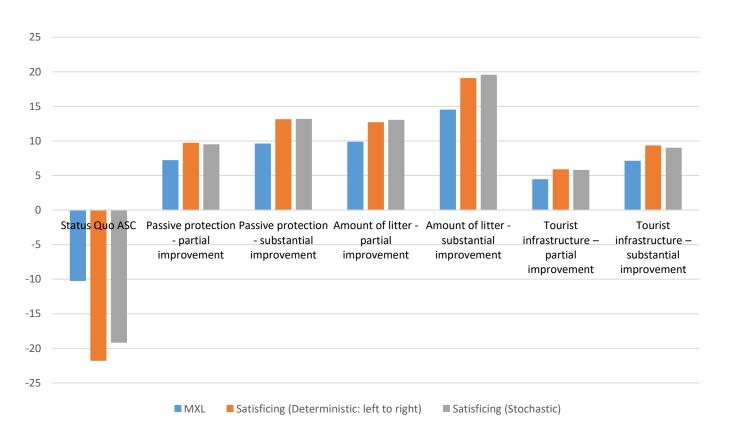
Choice task example


	Alternative 1	Alternative 2	Alternative 3	Alternative 4
Protection of ecologically valuable forests	Status quo Passive protection of 50%	Status quo Passive protection of 50%	Status quo Passive protection of 50%	Substantial improvement
	of the most ecologically valuable forests (1.5% of all forests)	of the most ecologically valuable forests (1.5% of all forests)	of the most ecologically valuable forests (1.5% of all forests)	Passive protection of 100% of the most ecologically valuable forests (3% of all forests, 100% increase)
Litter in forests	Status quo	Partial improvement	Status quo	Partial improvement
	No change in the amount of litter in the forests	Decrease the amount of litter in the forests by half (50% reduction)	No change in the amount of litter in the forests	Decrease the amount of litter in the forests by half (50% reduction)
Infrastructure	Status quo No change in tourist	Status quo No change in tourist	Partial improvement Appropriate tourist	Substantial improvement
	infrastructure	infrastructure	infrastructure in an additional 50% of the forests (50% increase)	Appropriate tourist infrastructure available in twice as many forests (100% increase)
Cost	0 PLN	10 PLN	25 PLN	100 PLN

• We compare 3 models:


- We compare 3 models:
 - Basic mixed logit (MXL)
 - Random utility
 - No satisficing

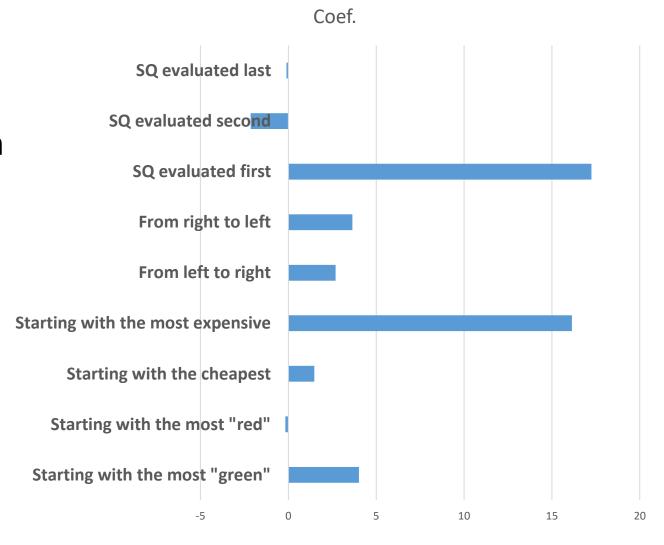
- We compare 3 models:
 - Satisficing Mixed Logit
 - Order in which individuals evaluate alternative is fixed
 - It is assumed that individuals go from left to right



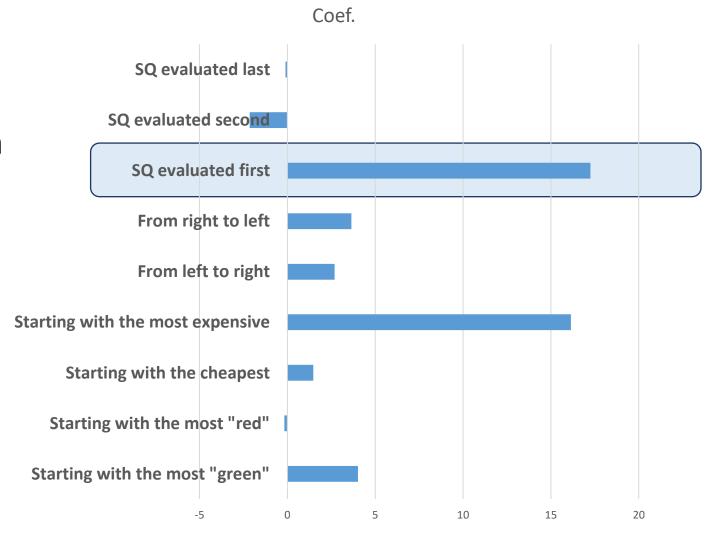
- We compare 3 models:
 - Stochastic Satisficing Mixed Logit
 - Order in which individuals evaluate alternative is random
 - From the researcher perspective
 - Different orders can have different probabilities

- We compare 3 models:
 - Log-likelihood is increasing significantly
 - 3rd model provides the best fit to data
 - The same conclusion when using AIC or BIC

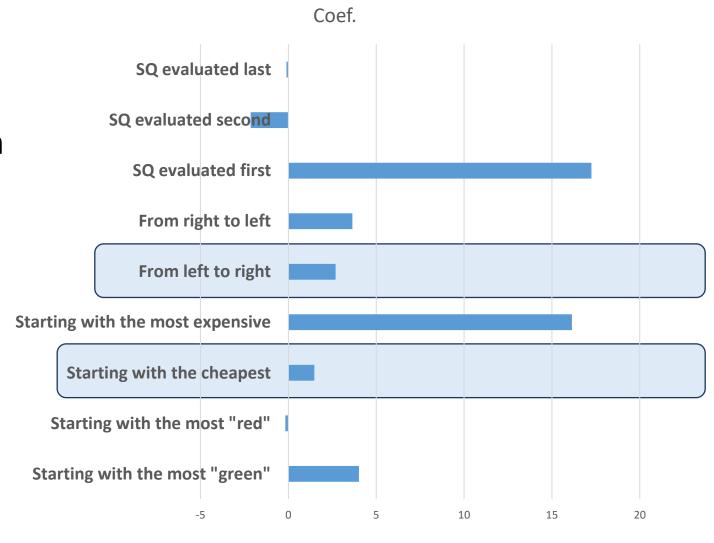
- There are significant differences in median WTP estimates when using satisficing model
 - Higher WTP for most attributes
 - Lower for Status Quo

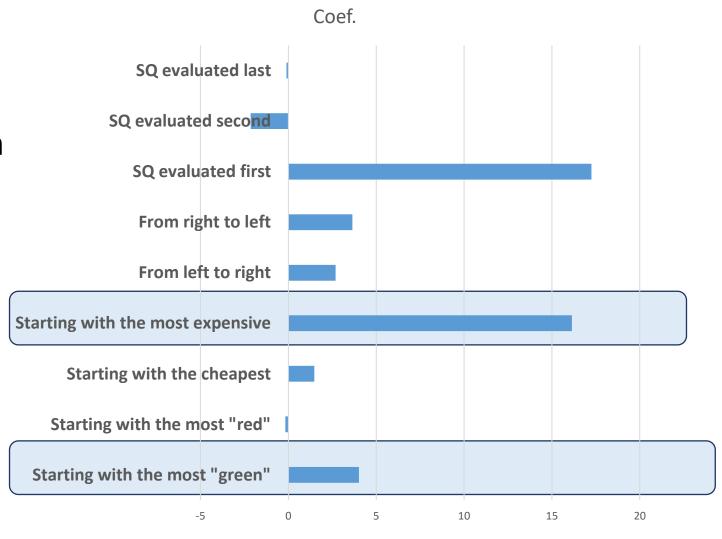


- Probability of being 'satisfied' with a given alternative is rather low
 - Dual role of satisficing threshold


	Substantial improvement in all attributes, cost is 10 PLN	Partial improvement in all attributes, cost is 10 PLN	improvement in amount of litter, partial improvement in the rest of attributes, cost is 25 PLN	Status Quo
Satisficing (Deterministic: left to right)	20.27%	13.94%	15.41%	1.25%
Satisficing (Stochastic)	19.59%	13.87%	15.10%	1.67%

Substantial


- There is a significant decision process heterogeneity with Stochastic Satisficing
 - Different orders evaluated with different probabilities


- There is a significant decision process heterogeneity with Stochastic Satisficing
 - Different orders evaluated with different probabilities
 - High probability of starting with a SQ alternative

- There is a significant decision process heterogeneity with Stochastic Satisficing
 - Different orders evaluated with different probabilities
 - High probability of starting with a SQ alternative
 - But not only 'left to right' order is significant

- There is a significant decision process heterogeneity with Stochastic Satisficing
 - Different orders evaluated with different probabilities
 - High probability of starting with a SQ alternative
 - But not only 'left to right' order is significant
 - Some orders which do not start with SQ are also possible

Conclusions

- The proposed model leads to a significant improvement in fit to data
 - Satisficing behavior affects WTP estimates
 - Satisficing threshold is not straightforward to interpret
 - It seems that large portion of the sample would still employ RUM (not satisfied with any alternative)
- Future work
 - Analyzing more datasets
 - Compare model performance with satisficing models previously proposed in the literature
 - Using eye-tracking data?

References

- Chorus, C., van Cranenburgh, S., & Dekker, T. (2014). Random regret minimization for consumer choice modeling: Assessment of empirical evidence. *Journal of Business Research*, 67(11), 2428-2436.
- De Palma, A., Ben-Akiva, M., Brownstone, D., Holt, C., Magnac, T., McFadden, D., ... & Walker, J. (2008). Risk, uncertainty and discrete choice models. *Marketing Letters*, 19(3-4), 269-285.
- González-Valdés, F., & de Dios Ortúzar, J. (2018). The Stochastic Satisficing model: A bounded rationality discrete choice model. *Journal of choice modelling*, 27, 74-87.
- Sandorf, E. D., & Campbell, D. (2018). Accommodating satisficing behaviour in stated choice experiments. *European Review of Agricultural Economics*, 46(1), 133-162.
- Scarpa, R., Zanoli, R., Bruschi, V., & Naspetti, S. (2012). Inferred and stated attribute non-attendance in food choice experiments. *American Journal of Agricultural Economics*, 95(1), 165-180.
- Stüttgen, P., Boatwright, P., & Monroe, R. T. (2012). A satisficing choice model. *Marketing Science*, 31(6), 878-899.