

Eliciting Consequentiality in Stated Preference Surveys: An Application to Urban Green

Ewa Zawojska¹, Malte Welling^{2,3} and Julian Sagebiel⁴

Introduction

Information on respondents' perceptions about survey consequentiality is typically collected close to the end of the survey, following the preference elicitation. We inquire whether—and if so, how—the location and a repetition of a consequentiality perception elicitation question matter for stated consequentiality perceptions and for stated preferences. To that end, we use data from a discrete choice experiment survey conducted in Germany, in which respondents evaluated a project of expanding urban green areas.

2. Literature: Consequentiality in stated preference

- Literature defines conditions for truthful preference disclosure in stated preference surveys (Carson and Groves 2007; Carson et al. 2014; Vossler et al. 2012; Vossler and Holladay 2018)
- One of the conditions: The survey is consequential.
 - "Consequentiality describes a condition in which an individual faces or perceives a non-zero probability that their responses will influence decisions related to the outcome in question and they will be required to pay for that outcome if it is implemented." (*Contemporary Guidance for Stated Preference Studies*, Johnston et al. 2017)
- How are consequentiality perceptions elicited in stated preference surveys?
 - Usually a single question. Or two questions for policy and payment consequentiality (Zawojska, Bartczak and Czajkowski (2019)

- Response scale: typically a Likert scale, from two to several levels
- Location: after preference elicitation

=> Our research question: How does location and repetition of the consequentiality elicitation impact stated consequentiality perceptions and stated preferences?

4. Consequentiality elicitation in our survey

Two samples, each half of respondents:

- "Asked-Once" sample: Respondents answer the consequentiality elicitation question once, right after preference elicitation.
- "Asked-Twice" sample: Respondents answer the same consequentiality elicitation question twice, before and after preference elicitation.

We used following consequentiality elicitation question (translated from German):

To what degree do you believe that your responses will be taken into account by policymakers and administration?

definitely considered	rather considered	rather not considered	definitely not considered	l do not know

(location & repetition) the perceptions are elicited?

- Ordered logit model
- Dependent variable: stated perceived consequentiality (1=strong, 4=weak)
- Explanatory variables:
 - Binary variable for **location** of elicitation question ("Before")
 - Binary variable for sample that answers two questions ("Asked-Twice")
 - Controls for socio-demographic characteristics and recruitment method

5. Econometric Approach

2) Do stated preferences or the effect of consequentiality perceptions on stated preferences differ depending on the way the perceptions are elicited?

- Mixed logit models in willingness-to-pay space
- For differences in stated preferences: looking at mean preference parameters
- For differences in effect of consequentiality perceptions on stated preferences: looking at interactions of mean preference parameters and stated consequentiality \rightarrow 3 models with the 3 different stated consequentiality responses interacted

(only results from Leipzig)

3 mixed logit models in WTP space:

	Model I	Model II	Model III	
Sample	Asked-Twice	Asked-Twice	Asked-Once	
Means interacted with	Before	After	After	
Means				
Status quo (1)	-0.11 (0.03)***	-0.01 (0.03)	-0.30 (0.03)***	
Street trees (1)	0.07 (0.01)***	0.07 (0.01)***	0.04 (0.01)***	
Green areas (1)	1.79 (0.29)***	1.58 (0.27)***	0.58 (0.23)**	St
Near-natural green (1)	0.84 (0.14)***	0.81 (0.12)***	0.86 (0.10)***	St
Greenways (1)	1.27 (0.11)***	1.19 (0.12)***	0.76 (0.10)***	~
A negative of <i>Cost</i> (1)	1.57 (0.15)***	1.43 (0.10)***	1.58 (0.12)***	G
Standard Deviations				Ν
Status quo (2)	1.62 (0.06)***	1.63 (0.05)***	1.57 (0.04)***	~
Street trees (2)	0.09 (0.01)***	0.11 (0.01)***	0.07 (0.00)***	G
Green areas (2)	2.46 (0.51)***	2.38 (0.26)***	1.38 (0.23)***	
Near-natural green (2)	1.98 (0.19)***	1.45 (0.13)***	1.40 (0.11)***	
Greenways (2)	0.74 (0.16)***	0.71 (0.10)***	0.40 (0.09)***	
A negative of <i>Cost</i> (2)	1.46 (0.17)***	1.35 (0.11)***	1.55 (0.13)***	
Interactions with perceived co	onsequentiality			
Status quo (3)	0.20 (0.02)***	0.08 (0.03)**	0.21 (0.03)***	
Street trees (3)	0.00 (0.01)	-0.01 (0.01)	0.00 (0.01)	
Green areas (3)	-0.13 (0.20)	-0.78 (0.28)***	0.34 (0.21)*	
Near-natural green (3)	-0.08 (0.12)	-0.27 (0.13)**	0.24 (0.12)**	
Greenways (3)	-0.16 (0.10)	0.09 (0.12)	-0.08 (0.10)	
A negative of <i>Cost</i> (3)	0.10 (0.09)	0.11 (0.08)	0.02 (0.09)	

z-test on differences in mean preference parameters and interactions:

· · · · · · · · · · · · · · · · · · ·	
Location:	Repetition:
Stated consequentiality	Stated consequentiality
is stronger when asked	is stronger after choice
before than after	tasks for those who
choice tasks	were asked twice
	Location : Stated consequentiality is stronger when asked before than after choice tasks

• Perceived consequentiality mainly shifts respondents' preferences regarding Status quo: • When perceived consequentiality gets stronger, respondents are willing to pay more to avoid the current state

7. Conclusions

- Findings are the same for three other cities Augsburg, Karlsruhe, Nürnberg
- The way how consequentiality perceptions are elicited (here: location and repetition) seems to matter for stated consequentiality.
- Also stated preferences seem to be sensitive to the way of elicitation. => Caution in designing the consequentiality elicitation
- WTP values increasingly corrected by consequentiality perceptions. These corrections might be sensitive to the way of elicitation.

References

Carson, R. T., & Groves, T. (2007). Incentive and informational properties of preference questions. *Environmental and resource economics*, 37(1), 181-210.

Carson, R. T., Groves, T., & List, J. A. (2014). Consequentiality: A theoretical and experimental exploration of a single binary choice. Journal of the Association of Environmental and Resource Economists, 1(1), 171-207.

Johnston, R. J., Boyle, K. J., Adamowicz, W., Bennett, J., Brouwer, R., Cameron, T. A., Hanemann, W. M., Hanley, N., Ryan, M., Scarpa, R., Tourangeau, R. & Vossler, C. A. (2017). Contemporary guidance for stated preference studies. Journal of the Association of Environmental and Resource Economists, 4(2), 319-405.

Lloyd-Smith, P., Adamowicz, W., & Dupont, D., (forthcoming). Incorporating stated consequentiality questions in stated preference research. Land Economics.

Vossler, C. A., Doyon, M., & Rondeau, D. (2012). Truth in consequentiality: theory and field evidence on discrete choice experiments. American Economic Journal: Microeconomics, 4(4), 145-71.

Vossler, C. A., & Watson, S. B. (2013). Understanding the consequences of consequentiality: Testing the validity of stated preferences in the field. Journal of Economic Behavior & Organization, 86, 137-147.

Zawojska, E., Bartczak, A., & Czajkowski, M. (2019). Disentangling the effects of policy and payment consequentiality and risk attitudes on stated preferences. Journal of Environmental Economics and Management, 93, 63-84.

Contact

ewa.zawojska@uw.edu.pl Ewa Zawojska: malte.welling@ioew.de Malte Welling: sagebiel@tu-berlin.de Julian Sagebiel: